Skip to main content
Log in

Delayed feedback stabilization and the Huijberts–Michiels–Nijmeijer problem

  • Control Theory
  • Published:
Differential Equations Aims and scope Submit manuscript

Abstract

A short survey on delayed feedback stabilization is given. The Huijberts–Michiels–Nijmeijer problem on the delayed feedback stabilization of unstable equilibria of two- and three-dimensional dynamical systems is considered. It is shown that the methods of delayed feedback stabilization of unstable periodic orbits can be used with advantage for the stabilization of unstable equilibria. An analytical study based on the D-decomposition method is given. Efficient necessary and/or sufficient conditions for the stabilizability of the systems in question are obtained in the form of explicit analytic expressions. These conditions define the boundaries of stabilizability domains in terms of system parameters. It follows from these conditions that the introduction of a delayed feedback control generally extends the possibilities of stationary stabilization of linear systems with delay-free feedback.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlborn, A. and Parlitz, U., Stabilizing unstable steady states using multiple delay feedback control, Phys. Rev. Lett., 2004, vol. 93, pp. 101–264.

    Article  Google Scholar 

  2. Ahlborn, A. and Parlitz, U., Controlling dynamical systems using multiple delay feedback control, Phys. Rev. E., 2005, vol. 72, pp. 16–206.

    Article  MathSciNet  Google Scholar 

  3. Amann, A. and Hooton, E., An odd-number limitation of extended time-delayed feedback control in autonomous systems, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 2013, vol. 371, no. 1999, 20120463, 8 pp.

    Article  MathSciNet  MATH  Google Scholar 

  4. Bellman, R. and Cooke, K., Differential-Difference Equations, New York: Academic Press, 1963.

    MATH  Google Scholar 

  5. Bielawski, S., Bouazaoui, M., Droizier, D., and Glorieux, P., Experimental characterization of unstable periodic orbits by controlling chaos, Phys. Rev. A., 1993, vol. 47, pp. 2492–2495.

    Article  Google Scholar 

  6. Bleich, M. and Socolar, J., Stability of periodic orbits controlled by time-delay feedback, Phys. Lett. A., 1996, vol. 210, pp. 87–94.

    Article  Google Scholar 

  7. Braiman, Y. and Goldhirsch, I., Taming chaotic dynamics with weak periodic perturbations, Phys. Rev. Lett., 1991, vol. 66, pp. 2545–2548.

    Article  MathSciNet  MATH  Google Scholar 

  8. Chacon, R. and Bejarano, D., Routes to suppressing chaos by weak periodic perturbations, Phys. Rev. Lett., 1993, vol. 71, pp. 3103–3106.

    Article  Google Scholar 

  9. Chang, A., Bienfang, J.C., Hall, G.M., Gardner, J.R., and Gauthier, D.J., Stabilizing unstable steady states using extended time-delay autosynchronization, Chaos, 1998, vol. 8, no. 4, pp. 782–790.

    Article  MATH  Google Scholar 

  10. Chebotarev, N. and Meiman, N., The Routh–Hurwitz problem for polynomials and entire functions, Trudy Mat. Inst. V.A. Steklova, 1949, vol. 26, no. 3, pp. 1–133.

    MathSciNet  MATH  Google Scholar 

  11. Dahms, T., Hovel, P., and Scholl, E., Stabilization of fixed points by extended time-delayed feedback control, Phys. Rev. E., 2007, vol. 76, pp. 56–213.

    Article  Google Scholar 

  12. Demidovich, B.P., Lectures on Mathematical Theory of Stability (in Russian), Moscow: Nauka, 1967.

    MATH  Google Scholar 

  13. El’sgolts, L. and Norkin, S., Introduction to the Theory and Application of Differential Equations with Deviations in Arguments, New York: Academic Press, 1973.

    Google Scholar 

  14. Fiedler, B., Flunkert, V., Georgi, M., Hovel, P., and Scholl, E., Refuting the odd-number limitation of time-delayed feedback control, Phys. Rev. Lett., 2007, vol. 98, pp. 101–114.

    Article  Google Scholar 

  15. Gjurchinovski, A. and Urumov, V., Stabilization of unstable states by variable delay feedback control, EPL., 2008, vol. 84, pp. 13–400.

    Article  MATH  Google Scholar 

  16. Gryazina, E., Polyak, B., and Tremba, A., D-Decomposition technique state-of-the-art, Autom. Remote Control, 2008, vol. 60, no. 12, pp. 1991–2026.

    Article  MATH  Google Scholar 

  17. Guzenko, P., Hovel, P., Flunkert, V., Fradkov, A., and Scholl, E., Adaptive tuning of feedback gain in time-delayed feedback control, in ENOC 2008.

  18. Hale, J., Theory of Functional Differential Equations, New York: Springer-Verlag, 1977.

    Book  MATH  Google Scholar 

  19. Hale, J., Ordinary Differential Equations, New York: Dover Publications, 2009.

    MATH  Google Scholar 

  20. Hino, T., Yamamoto, S., and Ushio, T., Stabilization of unstable periodic orbits of chaotic discretetime systems using prediction-based feedback control, Internat. J. Bifur. Chaos, 2002, vol. 12, no. 2, pp. 439–446.

    Article  MathSciNet  MATH  Google Scholar 

  21. Hooton, E. and Amann, A., An analytical limitation for time-delayed feedback control in autonomous systems, 2012, arXiv: 2 [nlin. CD]:1109–1138.

    MATH  Google Scholar 

  22. Hovel, P. and Scholl, E., Control of unstable steady states by time-delayed feedback methods, Phys. Rev. E., 2005, vol. 72, pp. 46–203.

    Article  Google Scholar 

  23. Huijberts, H., Michiels, W., and Nijmeijer, H., Stabilizability via time-delayed feedback: An eigenvalue optimization approach, SIAM J. Appl. Dyn. Syst., 2009, vol. 8, no. 1, pp. 1–20.

    Article  MathSciNet  MATH  Google Scholar 

  24. Just, W., Bernard, T., Ostheimer, M., Reibold, E., and Benner, H., Mechanism of time-delayed feedback control, Phys. Rev. Lett. V., 1997, vol. 78, pp. 203–206.

    Article  Google Scholar 

  25. Kivshar, Y., Rodelsperger, F., and Benner, H., Suppression of chaos by nonresonant parametric perturbations, Phys. Rev. E., 1994, vol. 49, pp. 319–324.

    Article  MathSciNet  Google Scholar 

  26. Kokame, H., Hirata, K., Konishi, K., and Mori, T., Difference feedback can stabilize uncertain steady states, IEEE Trans. Automatic Control, 2001, vol. 46, no. 12, pp. 1908–1913.

    Article  MathSciNet  MATH  Google Scholar 

  27. Kuznetsov, N., Alexeeva, T., and Leonov, G., Invariance of Lyapunov exponents and Lyapunov dimension for regular and irregular linearizations, Nonlin. Dyn., 2016, vol. 85, no. 1, pp. 195–201.

    Article  MathSciNet  MATH  Google Scholar 

  28. Kuznetsov, N., Leonov, G., and Shumafov, M., A short survey on Pyragas time-delay feedback stabilization and odd number limitation, IFAC-PapersOnLine, 2015, vol. 48, no. 11, pp. 706–709.

    Article  Google Scholar 

  29. Leonov, G., Pyragas stabilizability via delayed feedback with periodic control gain, Systems Control Lett., 2014, vol. 69, pp. 34–37.

    Article  MathSciNet  MATH  Google Scholar 

  30. Leonov, G. and Kuznetsov, N., Time-varying linearization and the Perron effects, Internat. J. Bifur. Chaos, 2007, vol. 17, no. 4, pp. 1079–1107.

    Article  MathSciNet  MATH  Google Scholar 

  31. Leonov, G. and Shumafov, M., Stabilization of Linear Systems, Cambridge: Cambridge Scientific Publishers, 2012.

    MATH  Google Scholar 

  32. Leonov, G., Shumafov, M., and Kuznetsov, N., Delayed feedback stabilization of unstable equilibria, IFAC Proceedings Volumes (IFAC-PapersOnline), 2014, vol. 47, no. 3, pp. 6818–6825.

    Article  Google Scholar 

  33. Lima, R. and Pettini, M., Supression of chaos by resonant parametric perturbations, Phys. Rev. Lett., 1990, vol. 41, pp. 726–733.

    Google Scholar 

  34. Liu, Z. and Chen, S., Control of chaos in conservative flows, Phys. Rev. E, 1997, vol. 56, no. 1, pp. 168–171.

    Article  Google Scholar 

  35. Nakajima, H., On analytical properties of delayed feedback control of chaos, Phys. Lett. A, 1997, vol. 232, pp. 207–210.

    Article  MathSciNet  MATH  Google Scholar 

  36. Nakajima, H. and Ueda, Y., Limitation of generalized delayed feedback control, Physica D., 1998, vol. 111, pp. 143–150.

    Article  MathSciNet  MATH  Google Scholar 

  37. Neimark, J., On Determination of Parameters under which a system of automatic control is stable, Avtomat. Telemech., 1948, vol. 9, no. 3, pp. 190–203.

    Google Scholar 

  38. Novichenko, V. and Pyragas, K., Time-delayed feedback control of periodic orbits with an odd-number of positive unstable Floquet multipliers, in ENOC 2014.

  39. Ott, E., Grebogi, C., and Yorke, J., Controlling chaos, Phys. Rev. Lett., 1990, vol. 64, pp. 1196–1199.

    Article  MathSciNet  MATH  Google Scholar 

  40. Pontryagin, L., On the zeros of some elementary transcendental functions, Izv. Math., 1942, vol. 6, no. 3, pp. 115–134.

    MATH  Google Scholar 

  41. Pyragas, K., Continuous control of chaos by selfcontrolling feedback, Phys. Lett. A, 1992, vol. 170, pp. 421–428.

    Article  Google Scholar 

  42. Pyragas, K., Control of chaos via extended delay feedback, Phys. Lett. A, 1995, vol. 206, pp. 323–330.

    Article  MathSciNet  MATH  Google Scholar 

  43. Pyragas, K., Control of chaos via an unstable delayed feedback controller, Phys. Rev. Lett., 2001, vol. 86, pp. 2265–2268.

    Article  Google Scholar 

  44. Pyragas, K., Delayed feedback control of chaos, Philos. Trans. R. Soc. Lond. Ser. A., 2006, vol. 369, pp. 2039–2334.

    MathSciNet  MATH  Google Scholar 

  45. Pyragas, K., A twenty-year review of time-delay feedback control and recent developments, International Symposium on Nonlinear Theory and its Applications, Spain, 2012, pp. 683–686.

    Google Scholar 

  46. Pyragas, K. and Novichecko, V., Time-delayed feedback control design beyond the odd-number limitation, Phys. Rev. E, 2013, vol. 88, p. 012903.

    Article  Google Scholar 

  47. Pyragas, K., Pyragas, V., Kiss, I.Z., and Hudson, J.L., Stabilizing and tracking unknown steady states of dynamical systems, Phys. Rev. Lett., 2002, vol. 89, pp. 103–244.

    Article  Google Scholar 

  48. Pyragas, K., Pyragas, V., Kiss, I.Z., and Hudson, J.L., Adaptive control of unknown unstable steady states of dynamical systems, Phys. Rev. E, 2004, vol. 70, pp. 206–215.

    Google Scholar 

  49. Rajasekar, S., Controlling of chaotic motion by chaos and noise signal in a logistic map and BVP oscillator, Phys. Rev. E, 1995, vol. 51, pp. 775–778.

    Article  Google Scholar 

  50. Ramesh, M., Chaos control by nonfeedback methods in the presence of noise, Chaos Solitons Fractal, 1999, vol. 10, pp. 1473–1489.

    Article  MATH  Google Scholar 

  51. Scholl, E. and Shuster, H., Handbook of Chaos Control, 2nd ed., Weinheim: Wiley-VCH, 2008.

    Google Scholar 

  52. Shaova, S. and Shumafov, M., On necessary stabilization condition of unstable linear systems by extended Pyragas’ delayed feedback, Vestnik Adyghe State University, 2014, vol. 130, no. 2, pp. 17–22.

    Google Scholar 

  53. Shinbrot, T., Grebogi, C., Ott, E., and Yorke, J., Using small perturbations to control chaos, Nature, 1993, vol. 363, pp. 411–417.

    Article  Google Scholar 

  54. Socolar, J., Sukow, D., and Gauthier, D., Stabilizing unstable periodic orbits in fast dynamical systems, Phys. Rev. E, 1994, vol. 50, pp. 3245–3248.

    Article  Google Scholar 

  55. Tian, Y., Zhu, J., and Chen, G., A survey on delayed feedback control of chaos, J. Control Theory Appl., 2005, vol. 4, pp. 311–319.

    Article  MathSciNet  MATH  Google Scholar 

  56. Ushio, T., Limitation of delayed feed-back control in nonlinear discrete-time systems, IEEE Trans. Circuits Systems I, 1996, vol. 43, no. 1, pp. 815–816.

    Article  Google Scholar 

  57. Yanchuk, S., Wolfrum, M., Hövel, P., and Schöll, E., Control of unstable steady states by long delay feedback, Phys. Rev. E, 2006, vol. 74, p. 026201.

    Article  MathSciNet  Google Scholar 

  58. Zubov, N., Mikrin, E., Misrikhanov, M., and Ryabchenko, V., Synthesis of controls for a spacecraft that optimize the pole placement of the close-loop control system, J. Comput. System Sci. Int., 2012, vol. 51, pp. 431–444.

    Article  MATH  Google Scholar 

  59. Zubov, N., Mikrin, E., Misrikhanov, M., and Ryabchenko, V., Modification of the exact pole placement method and its application for the control of spacecraft motion, J. Comput. System Sci. Int., 2013, vol. 52, pp. 279–292.

    Article  MathSciNet  MATH  Google Scholar 

  60. Zubov, N., Mikrin, E., Misrikhanov, M., Ryabchenko, V., and Timakov, S., The use of the exact pole placement algorithm for the control of spacecraft motion, J. Comput. System Sci. Int., 2013, vol. 52, pp. 129–144.

    Article  MATH  Google Scholar 

  61. Zubov, N., Vorob’eva, E., Mikrin, E., Misrikhanov, M., Ryabchenko, V., and Timakov, S., Synthesis of stabilizing spacecraft control based on generalized Ackermann’s formula, J. Comput. System Sci. Int., 2011, vol. 50, pp. 93–103.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Kuznetsov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leonov, G.A., Shumafov, M.M. & Kuznetsov, N.V. Delayed feedback stabilization and the Huijberts–Michiels–Nijmeijer problem. Diff Equat 52, 1707–1731 (2016). https://doi.org/10.1134/S0012266116130036

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012266116130036

Key words

Navigation