Skip to main content
Log in

Physicochemical parameters of the material of mantle plumes: Evidence from the thermodynamic analysis of mineral inclusions in sublithospheric diamond

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Thermodynamic analysis of equilibria involving minerals of the lower mantle of pyrolite composition and crystalline carbon-bearing compounds indicates that the range of oxygen fugacity values at which diamond can be formed is separated from the region in which Fe-rich metallic alloy is generated by a field in which Fe carbides are stable. This implies that diamond can be formed in the lower mantle under more oxidizing conditions than those thought to be dominant in this geosphere. The absence of a metallic phase from the lower-mantle diamond-bearing mineral assemblage is consistent with the high (approximately 1%) Ni concentration in the ferropericlase found as inclusions in diamonds (Fe-rich metallic alloy is able to intensely extract Ni). An elevated redox potential also follows from the occurrence of carbonate phases found among mineral inclusions in lower-mantle diamonds. The main reason for a local increase in oxygen fugacity in the lower mantle may be shifts of redox equilibria toward a decrease in the amount, and then the disappearance of the Fe-Ni alloy with increasing temperature. An important role in the formation of diamond may be played by the generation of carbonate-phosphate and silicate melts in high-temperature zones and the migration of these melts and their interaction with wall rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. M. Tainton and D. McKenzie, “The generation of kimberlites, lamproites, and their source rocks,” J. Petrol. 35, 787–817 (1994).

    Article  Google Scholar 

  2. I. D. Ryabchikov, “Trace elements as indicators of generation of kimberlite melts,” Dokl. Akad. Nauk 338, 376–378 (1994).

    Google Scholar 

  3. I. D. Ryabchikov and A. V. Girnis, “Genesis of low-calcium kimberlite magmas,” Russ. Geol. Geophys. 46(12), 1202–1212 (2005).

    Google Scholar 

  4. A. V. Girnis, G. P. Brey, and I. D. Ryabchikov, “Origin of group IA kimberlites—fluid-saturated melting experiments at 45–55 kbar,” Earth Planet. Sci. Lett. 134, 283–296 (1995).

    Article  Google Scholar 

  5. A. V. Girnis, V. K. Bulatov, and G. P. Brey, “Formation of primary kimberlite melts—constraints from experiments at 6–12 GPa and variable CO2/H2O,” Lithos 127, 401–413 (2011).

    Article  Google Scholar 

  6. E. M. Galimov, “Growth of the Earth’s core as a source of its internal energy and a factor of mantle redox evolution,” Geochem. Int. 36(8), 673–675 (1998).

    Google Scholar 

  7. E. M. Galimov, “Redox evolution of the Earth caused by a multi-stage formation of its core,” Earth Planet. Sci. Lett. 233, 263–276 (2005).

    Article  Google Scholar 

  8. D. J. Frost, C. Liebske, F. Langenhorst, C. A. McCammon, R. G. Trønnes, and D. C. Rubie, “Experimental evidence for the existence of iron-rich Metal in the Earth’s lower mantle,” Nature 428, 409–412 (2004).

    Article  Google Scholar 

  9. T. J. B. Holland and R. Powell, “An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids,” J. Metamorph. Geol. 29, 333–383 (2011).

    Article  Google Scholar 

  10. T. J. B. Holland, N. F. C. Hudson, R. Powell, and B. Harte, “New thermodynamic models and calculated phase equilibria in NCFMAS for basic and ultrabasic compositions through the transition zone into the uppermost lower mantle,” J. Petrol. 54, 1901–1920 (2013).

    Article  Google Scholar 

  11. A. J. Campbell, L. Danielson, K. Righter, C. T. Seagle, Y. Wang, and V. B. Prakapenka, “High pressure effects on the iron-iron oxide and nickel-nickel oxide oxygen fugacity buffers,” Earth Planet. Sci. Lett. 286, 556–564 (2009).

    Article  Google Scholar 

  12. D. J. Frost, “Fe2+-Mg partitioning between garnet, magnesiowustite, and (Mg,Fe)2SiO4 phases of the transition zone,” Am. Mineral. 88, 387–397 (2003).

    Google Scholar 

  13. S. Seifert and H. S. C. O’Neill, “Experimental determination of activity-composition relations in Ni2SiO4-Mg2SiO4 and Co2SiO4-Mg2SiO4 olivine solid solutions at 1200 K and 0.1 MPa and 1573 K and 0.5 GPa,” Geochim. Cosmochim. Acta 51, 97–104 (1987).

    Article  Google Scholar 

  14. L. J. Swartzendruber, V. P. Itkin, and C. B. Alcock, “The Fe-Ni (iron-nickel) system,” J. Phase Equilib. 12, 288–312 (1991).

    Article  Google Scholar 

  15. T. Irifune, T. Shinmei, C. A. McCammon, N. Miyajima, D. C. Rubie, and D. J. Frost, “Iron partitioning and density changes of pyrolite in Earth’s lower mantle,” Science 327, 193–195 (2010).

    Article  Google Scholar 

  16. R. Sinmyo and K. Hirose, “Iron partitioning in pyrolitic lower mantle,” Phys. Chem. Miner. 40, 107–113 (2013).

    Article  Google Scholar 

  17. R. Sinmyo, K. Hirose, S. Muto, Y. Ohishi, and A. Yasuhara, “The valence state and partitioning of iron in the Earth’s lowermost mantle,” J. Geophys. Res.-Soild Earth 116, B07205 (2011).

    Google Scholar 

  18. F. V. Kaminsky, “Mineralogy of the lower mantle: a review of “super-deep” mineral inclusions in diamond,” Earth-Sci. Rev. 110, 127–147 (2012).

    Article  Google Scholar 

  19. D. A. Zedgenizov, E. S. Yefimova, A. M. Logvinova, V. S. Shatsky, and N. V. Sobolev, “Ferropericlase inclusions in a diamond microcrystal from the Udachnaya kimberlite pipe, Yakutia,” Dokl. Earth Sci. 377A(3), 319–321 (2001).

    Google Scholar 

  20. D. J. Frost and C. A. McCammon, “The redox state of Earth’s mantle,” Annu. Rev. Earth Planet. Sci. 36, 389–420 (2008).

    Article  Google Scholar 

  21. I. D. Ryabchikov, “Conditions of diamond formation in the Earth’s lower mantle,” Dokl. Earth Sci. 438(2), 788–791 (2011).

    Article  Google Scholar 

  22. I. D. Ryabchikov and F. V. Kaminsky, “Oxygen potential of diamond formation in the lower mantle,” Geol. Ore Dep. 55(1), 1–12 (2013).

    Article  Google Scholar 

  23. A.-L. Auzende, J. Badro, F. J. Ryerson, P. K. Weber, S. J. Fallon, A. Addad, J. Siebert, and G. Fiquet, “Element partitioning between magnesium silicate perovskite and ferropericlase: new insights into bulk lowermantle geochemistry,” Earth Planet. Sci. Lett. 269, 164–174 (2008).

    Article  Google Scholar 

  24. J. A. Pearce, S. R. Van der Laan, R. J. Arculus, D. W. Peate, and I. J. Parkinson, “Boninite and harzburgite from Leg 125 (Bonin-Mariana Forearc): a case study of magma genesis during the initial stages of subduction,” Proc. Ocean Drill. Progr. Sci. Res. 125, 623–659 (1992).

    Google Scholar 

  25. F. V. Kaminsky, G. K. Khachatryan, P. Andreazza, D. Araujo, and W. L. Griffin, “Superdeep diamonds from kimberlites in the Juina Area, Mato Grosso State, Brazil,” Lithos 112S, 833–842 (2009).

    Article  Google Scholar 

  26. F. V. Kaminsky, O. D. Zakharchenko, R. Davies, W. L. Griffin, G. K. Khachatryan-Blinova, and A. A. Shiryaev, “Superdeep diamonds from the Juina Area, Mato Grosso State, Brazil,” Contrib. Mineral. Petrol. 140, 734–753 (2001).

    Article  Google Scholar 

  27. P. C. Hayman, M. G. Kopylova, and F. V. Kaminsky, “Lower mantle diamonds from Rio Soriso (Juina, Brazil),” Contrib. Mineral. Petrol. 149, 430–445 (2005).

    Article  Google Scholar 

  28. K. Hirose, N. Takafuji, N. Sata, and Y. Ohishi, “Phase transition and density of subducted MORB crust in the lower mantle,” Earth Planet. Sci. Lett. 237, 239–251 (2005).

    Article  Google Scholar 

  29. R. Nomura, H. Ozawa, S. Tateno, K. Hirose, H. Hernlund, S. Muto, H. Ishii, and N. Hiraoka, “Spin crossover and iron-rich silicate melt in the Earth’s deep mantle,” Nature 473, 199–203 (2011).

    Article  Google Scholar 

  30. D. Andrault, S. Petitgirard, G. Lo Nigro, J.-L. Devidal, G. Veronesi, G. Garbarino, and M. Mezouar, “Solidliquid iron partitioning in Earth’s deep mantle,” Nature 487, 354–357 (2012).

    Article  Google Scholar 

  31. R. A. Robie, B. S. Hemingway, and J. R. Fisher, Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 bar (10 5 Pascals) Pressure and at Higher Temperatures (United States Government Printing Office, Washington, 1978).

    Google Scholar 

  32. H. P. Scott, Q. Williams, and E. Knittle, “Stability and equation of state of Fe3C to 73 GPa: implications for carbon in the Earth’s core,” Geophys. Res. Lett. 28, 1875–1878 (2001).

    Article  Google Scholar 

  33. A. Rohrbach and M. W. Schmidt, “Redox freezing and melting in the Earth’s deep mantle resulting from carbon-iron redox coupling,” Nature 472, 209–214 (2011).

    Article  Google Scholar 

  34. T. J. Holland and R. Powell, “An internally consistent thermodynamic data set for phases of petrological interest,” J. Metamorph. Geol. 16, 309–343 (1998).

    Article  Google Scholar 

  35. T. Katsura, A. Yoneda, D. Yamazaki, T. Yoshino, and E. Ito, “Adiabatic temperature profile in the mantle,” Phys. Earth Planet. Inter. 183, 212–218 (2010).

    Article  Google Scholar 

  36. K. Otsuka, M. Longo, C. McCammon, and S. Karato, “Ferric iron content of ferropericlase as a function of composition, oxygen fugacity, temperature and pressure: implications for redox conditions during diamond formation in the lower mantle,” Earth Planet. Sci. Lett. 365, 7–16 (2013).

    Article  Google Scholar 

  37. F. Kaminsky, R. Wirth, S. Matsyuk, A. Schreiber, and R. Thomas, “Nyerereite and nahcolite inclusions in diamond: evidence for lower-mantle carbonatitic magmas,” Mineral. Mag. 73, 797–816 (2009).

    Article  Google Scholar 

  38. F. V. Kaminsky, R. Wirth, and A. Schreiber, “Carbonatitic inclusions in deep mantle diamond from Juina, Brazil: new minerals in the carbonate-halide association,” Can. Mineral. 51, 669–688 (2013).

    Article  Google Scholar 

  39. A. Muan, “Phase equilibria at high temperatures in oxide systems involving changes in oxidation state,” Am. J. Sci. 256, 171–207 (1958).

    Article  Google Scholar 

  40. E. Bykova, M. Bykov, V. Prakapenka, Z. Konopkova, H.-P. Liermann, N. Dubrovinskaia, and L. Dubrovinsky, “Novel high pressure monoclinic Fe2O3 polymorph revealed by single-crystal synchrotron X-Ray diffraction studies,” High Pressure Res. 33, 534–545 (2013).

    Article  Google Scholar 

  41. D. Canil, H. S. C. O’Neill, D. G. Pearson, R. Rudnick, W. F. McDonough, and D. A. Carswell, “Ferric iron in peridotites and mantle oxidation states,” Earth Planet. Sci. Lett. 123, 205–220 (1994).

    Article  Google Scholar 

  42. P. J. Wyllie and I. D. Ryabchikov, “Volatile components, magmas, and critical fluids in upwelling mantle,” J. Petrol. 41, 1195–1206 (2000).

    Article  Google Scholar 

  43. H. Palme and H. S. C. O’Neill, “Cosmochemical estimates of mantle composition,” in Treatise on Geochemistry (The Mantle and Core), Ed. by R. W. Carlson (Elsevier, Amsterdam, 2003), Vol. 2, pp. 1–38.

    Google Scholar 

  44. I. D. Ryabchikov and D. L. Hamilton, “Interaction of carbonate-phosphate melts with mantle peridotites at 20–35 kbar,” S. Afr. J. Geol. 96, 143–148 (1993).

    Google Scholar 

  45. I. D. Ryabchikov and D. L. Hamilton, “Near-solidus carbonate-phosphate melts in mantle peridotites,” Geokhimiya, No. 12, 1151–1160 (1993).

    Google Scholar 

  46. I. D. Ryabchikov, “Oxygen potential of high-magnesium magmas,” Dokl. Earth Sci. 448(1), 149–152 (2012).

    Article  Google Scholar 

  47. I. D. Ryabchikov and L. N. Kogarko, “Oxygen potential and PGE geochemistry of alkaline-ultramafic complexes,” Geol. Ore Dep. 54(4), 241–253 (2012).

    Article  Google Scholar 

  48. I. D. Ryabchikov and L. N. Kogarko, “FeO activity and oxygen potential in magnesian magmas,” Geochem. Int. 51(12), 949–958 (2013).

    Article  Google Scholar 

  49. A. V. Sobolev, S. V. Sobolev, D. V. Kuzmin, K. N. Malitch, and A. G. Petrunin, “Siberian meimechites: origin and relation to flood basalts and kimberlites,” Russ. Geol. Geophys. 50(12), 999–1033 (2009).

    Article  Google Scholar 

  50. A. V. Sobolev, B. C. Kamenetskii, and N. N. Kononkova, “New petrological data on Siberian meimechites,” Geokhimiya, No. 11, pp. 1084–1095 (1991).

    Google Scholar 

  51. G. Fiquet, A. L. Auzende, J. Siebert, A. Corgne, H. Bureau, H. Ozawa, and G. Garbarino, “Melting of peridotite to 140 gigapascals,” Science 329, 1516–1518 (2010).

    Article  Google Scholar 

  52. F. Kaminsky and R. Wirth, “Iron Carbide inclusions in lower-mantle diamond from Juina, Brazil,” Can. Mineral. 49, 555–572 (2011).

    Article  Google Scholar 

  53. R. Boehler, “High-pressure experiments and the phase diagram of lower mantle and core materials,” Rev. Geophys. 38, 221–245 (2000).

    Article  Google Scholar 

  54. S. Anzellini, A. Dewaele, M. Mezouar, P. Loubeyre, and G. Morard, “Melting of iron at Earth’s inner core boundary based on fast X-ray diffraction,” Science 340, 464–466 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. D. Ryabchikov.

Additional information

Original Russian Text © I.D. Ryabchikov, F.V. Kaminsky, 2014, published in Geokhimiya, 2014, No. 11, pp. 963–971.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryabchikov, I.D., Kaminsky, F.V. Physicochemical parameters of the material of mantle plumes: Evidence from the thermodynamic analysis of mineral inclusions in sublithospheric diamond. Geochem. Int. 52, 903–911 (2014). https://doi.org/10.1134/S001670291411007X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001670291411007X

Keywords

Navigation