Skip to main content
Log in

The mineralogy of Ca-rich inclusions in sublithospheric diamonds

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

This paper discusses mineralogy of Ca-rich inclusions in ultra-deep (sublithospheric) diamonds. It was shown that most of the Ca-rich majoritic garnets are of metabasic (eclogitic) affinity. The observed variation in major and trace element composition is consistent with variations in the composition of the protolith and the degree of enrichment or depletion during interaction with melts. Major and trace element compositions of the inclusions of Ca minerals in ultra-deep diamonds indicate that they crystallized from Ca-carbonatite melts that were derived from partial melting of eclogite bodies in deeply subducted oceanic crust in the transition zone or even the lower mantle. The occurrence of merwinite or CAS inclusions in ultra-deep diamonds can serve as mineralogical indicators of the interaction of metaperidotitic and metabasic mantle lithologies with alkaline carbonatite melts. The discovery of the inclusions of carbonates in association with ultra-deep Ca minerals can not only provide additional support for their role in the diamond formation process but also help to define additional mantle reservoirs involved in global carbon cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M. Akaogi and S. Akimoto, “Pyroxene–garnet solid solution equilibria in the systems Mg4Si4O12–Mg3Al2Si3O12 and Fe4Si4O12–Fe3Al2Si3O12 at high pressures and temperatures,” Phys. Earth Planet. Int. 15(1), 90–106 (1977).

    Article  Google Scholar 

  • G. E. Bebout, “The impact of subduction–zone metamorphism on mantle–ocean chemical cycling” Chem. Geol. 126 (2), 191–218 (1995).

    Article  Google Scholar 

  • L. Bindi, O. G. Safonov, and D. A. Zedgenizov, “Merwinite–structured phases as a potential host of alkalis in the upper mantle,” Contrib. Miner. Petrol. 170, 14 (2015).

    Article  Google Scholar 

  • A. V. Bobrov, A. M. Dymshits, and Yu. A. Litvin, “Conditions of magmatic crystallization of na–bearing majoritic garnets in the earth mantle: evidence from experimental and natural data,” Geochem. Int. 47(10), 951–965 (2009).

    Article  Google Scholar 

  • F. E. Brenker, T. Stachel, and J. W. Harris, “Exhumation of lower mantle inclusions in diamond: ATEM investigation of retrograde phase transitions, reactions and exsolution,” Earth Planet. Sci. Lett. 198 (1), 1–9 (2002).

    Article  Google Scholar 

  • F. E. Brenker, L. Vincze, B. Vekemans, L. Nasdala, T. Stachel, C. Vollmer, M. Kersten, A. Somogyi, F. Adams, W. Joswig, and J. W. Harris, “Detection of a Ca–rich lithology in the Earth’s deep (>300 km) convecting mantle,” Earth Planet. Sci. Lett. 236, 579–587 (2005).

    Article  Google Scholar 

  • F. E. Brenker, C. Vollmer, L. Vincze, B. Vekemans, A. Szymanski, K. Janssens, I. Szaloki, L. Nasdala, W. Joswig, and F. Kaminsky, “Carbonates from the lower part of transition zone or even the lower mantle,” Earth Planet. Sci. Lett. 260, 1–9 (2007).

    Article  Google Scholar 

  • G. P. Bulanova, M. J. Walter, C. B. Smith, S. C. Kohn, L. S. Armstrong, J. Blundy, and L. Gobbo, “Mineral inclusions in sublithospheric diamonds from Collier 4 kimberlite pipe, Juina, Brazil: subducted protoliths, carbonated melts and primary kimberlite magmatism,” Contrib. Mineral. Petrol. 160, 489–510 (2010).

    Article  Google Scholar 

  • R. M. Davies, S. Y. O’Reilly, and W. L. Griffin, “Diamonds from Wellington, NSW: insights into the origin of eastern Australian diamonds,” Mineral. Mag. 63, 447–471 (1999).

    Article  Google Scholar 

  • P. Deines, J. W. Harris, and J. J. Gurney, “The carbon isotopic composition and nitrogen content of lithospheric and asthenospheric diamonds from the Jagersfontein and Koffiefontein kimberlite, South Africa,” Geochim. Cosmochim. Acta 55, 2615–2625 (1991).

    Article  Google Scholar 

  • N. L. Dobretsov, D. A. Zedgenizov, and K. D. Litasov “Evidence for and consequences of the “hot” subduction model,” Dokl. Earth Sci. 462 (1), 517–521 (2015).

    Article  Google Scholar 

  • T. Gasparik, K. Wolf, and C. M. Smith, “Experimental determination of phase relations in the CaSiO3 system from 8 to 15 GPa,” Am. Mineral. 79 (11–12), 1219–1222 (1994).

    Google Scholar 

  • D. Grassi and M. W. Schmidt, “The melting of carbonated pelites from 70 to 700 km depth,” J. Petrol. 52(4), 765–789 (2011).

    Article  Google Scholar 

  • J. J. Gurney, “A correlation between garnets and diamonds,” in Kimberlite Occurrence and Origin: a Basis for Conceptual Models in Exploration Ed. by J. E. Glover and P. G. Harris, Geology Department and University Extension, University of Western Australia 8, 143–166 (1984).

    Google Scholar 

  • J. J. Gurney, J. W. Harris, R. S. Rickard, and R. O. Moore “Premier mine diamond inclusions,” Trans. Geol. Soc. S. Africa 88, 301–310 (1985).

    Google Scholar 

  • B. Harte, “Diamond formation in the deep mantle: the record of mineral inclusions and their distribution in relation to mantle dehydration zones,” Mineral. Mag. 74 (2), 189–215 (2010).

    Article  Google Scholar 

  • B. Harte and N. Cayzer, “Decompression and unmixing of crystals included in diamonds from the mantle transition zone,” Phys. Chem. Miner. 34 (9), 647–656 (2007).

    Article  Google Scholar 

  • B. Harte, J. W. Harris, M. T. Hutchison, G. R. Watt, and M. C. Wilding, “Lower mantle mineral associations in diamonds from São Luiz, Brazil,” in Mantle Petrology: Field Observations and High Pressure Experimentation. A Tribute to Francis R. (Joe), Ed. by Y. Boyd Fei, (The Geochemical Society, Houston, 1999), pp. 125–153.

    Google Scholar 

  • P. C. Hayman, M. G. Kopylova, and F. V. Kaminsky, “Lower mantle diamonds from Rio Soriso (Juina area, Mato Grosso, Brazil),” Contrib. Mineral. Petrol. 149, 430–445 (2005).

    Article  Google Scholar 

  • K. Hirose and Y. Fei, “Subsolidus and melting phase relations of basaltic composition in the uppermost lower mantle,” Geochim. Cosmochim. Acta 66 (12), 2099–2108 (2002).

    Article  Google Scholar 

  • K. Hirose, Y. Fei, Y. Ma, and H.–K. Mao, “The fate of subducted basaltic crust in the Earth’s lower mantle,” Nature 397, 53–56 (1999).

    Article  Google Scholar 

  • K. Hirose, N. Shimizu, van W. Westrenen, and Y. Fei, “Trace element partitioning in Earth’s lower mantle and implications for geochemical consequences of partial melting at the core–mantle boundary,” Phys. Earth Planet. Int. 146, 249–260 (2004).

    Article  Google Scholar 

  • M. T. Hutchison, P. Cartigny, and J. W. Harris, “Carbon and nitrogen nompositons and physical characteristics of transition zone and lower mantle diamonds from Sao Luiz, Brazil,” in Proceedings of the VIIth International kimberlite Conference, J. B. Dawson Volume (Red Roof Design, Cape Town, RSA, 1999), pp. 372–382.

    Google Scholar 

  • M. T. Hutchison, M. B. Hursthouse, and M. E. Light, “Mineral inclusions in diamonds: associations and chemical distinctions around the 670 km discontinuity,” Contrib. Mineral. Petrol. 142, 119–126 (2001).

    Article  Google Scholar 

  • T. Irifune, T. Sekine, A. E. Ringwood, and W. O. Hibberson, “The eclogite–garnetite transformation at high pressure and some geophysical implications,” Earth Planet. Sci. Lett. 77 (2), 245–256 (1986).

    Article  Google Scholar 

  • T. Irifune, A. E. Ringwood, and W. O. Hibberson, “Subduction of continental crust and terrigenous and pelagic sediments: an experimental study,” Earth Planet. Sci. Lett. 126(4), 351–368 (1994).

    Article  Google Scholar 

  • W. Joswig, T. Stachel, J. W. Harris, W. H. Baur, and G. P. Brey, “New Ca–silicate inclusions in diamonds–tracers from the lower mantle,” Earth Planet. Sci. Lett. 173 (1), 1–6 (1999).

    Article  Google Scholar 

  • F. Kaminsky, “Mineralogy of the lower mantle: a review of ‘super–deep’ mineral inclusions in diamond,” Earth–Sci. Rev. 110 (1), 127–147 (2012).

    Article  Google Scholar 

  • F. V. Kaminsky, O. D. Zakharchenko, R. M. Davies, W. L. Griffin, G. K. Khachatryan-Blinova, and A. A. Shiryaev, “Superdeep diamonds from the Juina area, Mato Grosso State, Brazil,” Contrib. Mineral. Petrol. 140, 734–753 (2001).

    Article  Google Scholar 

  • F. V. Kaminsky, R. Wirth, and A. Schreiber, “Carbonatitic inclusions in deep mantle diamond from Juina, Brazil: new minerals in the carbonate–halide association,” Can. Mineral. 51(5), 669–688 (2013).

    Article  Google Scholar 

  • D. M. Kerrick and J. A. D. Connolly, “Subduction of ophicarbonates and recycling of CO2 and H2O,” Geology 26(4), 375–378 (1998).

    Article  Google Scholar 

  • S. Keshav, G. Gudfinnsson, and D. Presnall, “Majoritic–garnets and clinopyroxenes in cratonic diamonds: Precipitates from CO2–rich melts,” Proc. 11th Int. Conf. EMPG 36 (2006).

  • E. S. Kiseeva, G. M. Yaxley, J. Hermann, K. D. Litasov, A. Rosenthal, and V. S. Kamenetsky, “An experimental study of carbonated eclogite at 3.5–5.5 GPa–implications for silicate and carbonate metasomatism in the cratonic mantle,” J. Petrol. 53, 727–759 (2012).

    Article  Google Scholar 

  • T. Kubo, T. Suzuki, and M. Akaogi, “High pressure phase equilibria in the system CaTiO3–CaSiO3: stability of perovskite solid solutions,” Phys. Chem. Miner. 24, 488–494 (1997).

    Article  Google Scholar 

  • K. D. Litasov and E. Ohtani, “The solidus of carbonated eclogite in the system CaO–Al2O3–MgO–SiO2–Na2O–CO2 to 32 GPa and carbonatite liquid in the deep mantle,” Earth Planet. Sci. Lett. 295, 115–126 (2010).

    Article  Google Scholar 

  • C. McCammon, “Perovskite as a possible sink for ferric iron in the lower mantle,” Nature 387, 694–696 (1997).

    Article  Google Scholar 

  • P. McDade and J. W. Harris, “Syngenetic inclusion bearing diamonds from Letseng–la–Terai, Lesotho,” Proc. VII Intern. Kimb. Conf., Ed. by J. J. Gurney, J. L. Gurney, M. D. Pascoe, and S. H. Richardson (Red Roof Design, Cape Town, 1999), Vol. 2, 557–565.

    Google Scholar 

  • J. C. Moore, “Selective subduction,” Geology 3, 530–532 (1975).

    Article  Google Scholar 

  • R. O. Moore and J. J. Gurney, “Mineral inclusions in diamond from the Monastery kimberlite, South Africa,” Kimberlites and related rocks. Proc. 4th Int. Kimb. Conf., (1989), Vol. 2, 1029–1041.

    Google Scholar 

  • R. O. Moore and J. J. Gurney, “Pyroxene solid solution in garnets included in diamond,” Nature 318, 553–555 (1985).

    Article  Google Scholar 

  • R. O. Moore, J. J. Gurney, W. L. Griffin, and N. Shimizu, “Ultra–high pressure inclusions in Monastery diamonds: trace element abundance patterns and conditions of origin,” Eur. J. Mineral. 3, 213–230 (1991).

    Article  Google Scholar 

  • N. P. Pokhilenko, N. V. Sobolev, J. A. McDonald, A. E. Hall, E. S. Yefimova, D. A. Zedgenizov, A. M. Logvinova, and L. F. Reimers, “Crystalline inclusions in diamonds from kimberlites of the Snap Lake Area (Slave Craton, Canada): new evidences for the anomalous lithospheric structure,” Dokl. Earth Sci. 380, 806–811 (2001).

    Google Scholar 

  • S. Poli and M. W. Schmidt, “Petrology of subducted slabs,” Annu. Rev. Earth Planet. Sci. 30 (1), 207–235 (2002).

    Article  Google Scholar 

  • A. E. Ringwood, Composition and Petrology of the Eath’s Mantle (McGraw–Hill, New York, 1975).

    Google Scholar 

  • A. E. Ringwood and A. Major, “Synthesis of majorite and other high pressure garnets and perovskites,” Earth Planet. Sci. Lett. 12 (4), 411–418 (1971).

    Article  Google Scholar 

  • D. J. Schulze, B. Harte, J. W. Valley, J. M. Brenan, D.M. Channer, and R. De, “Extreme crustal oxygen isotope signatures preserved in coesite in diamond,” Nature 423, 68–70 (2003).

    Article  Google Scholar 

  • B. H. Scott Smith and E. M. W. Skinner, “Diamondiferous lamproites,” J. Geol. 92, 433–438 (1984).

    Article  Google Scholar 

  • I. S. Sharygin, K. D. Litasov, A. Shatskiy, O. G. Safonov, E. Ohtani, and N. P. Pokhilenko, “Interaction of orthopyroxene with carbonatite melts at 3 and 6.5 GPa: implication for evolution of kimberlite magma,” in G-COE Symposium 2012 “Achievement of G–COE Program for Earth and Planetary Science”, Sendai, Japan, 2012 (Sendai, 2012), pp. 146–149, Japan.

    Google Scholar 

  • V. S. Shatsky, D. A. Zedgenizov, and A. L. Ragozin, “Majoritic garnets in diamonds from placers of the northeastern Siberian Platform,” Dokl. Earth Sci. 432 (6), 835–838 (2010).

    Article  Google Scholar 

  • S. Shilobreeva, I. Martinez, V. Busigny, P. Agrinier, and C. Laverne “Insights into C and H storage in the altered oceanic crust: results from ODP/IODP Hole 1256D,” Geochim. Cosmochim. Acta 75, 2237–2255 (2011).

    Article  Google Scholar 

  • E. A. Sirotkina, A. V. Bobrov, L. Bindi, and T. Irifune, “Phase relations and formation of chromium–rich phases in the system Mg4Si4O12–Mg3Cr2Si3O12 at 10–24 GPa and 1600°C,” Contrib. Mineral. Petrol. 169, (2015). doi: doi 10.1007/s00410–014–1097–0

  • N. V. Sobolev, E. S. Efimova, L. F. Reimers, O. D. Zakharchenko, A. N. Makhin, and L. V. Usova, “Mineral inclusions in diamonds of the Arkhangelsk kimberlite province,” Geol. Geofiz. 38 (2), 358–370 (1997).

    Google Scholar 

  • N. V. Sobolev, F. V. Kaminsky, W. L. Griffin, E. S. Yefimova, T. T. Win, C. G. Ryan, and A. I. Botkunov, “Mineral inclusions in diamonds from the Sputnik kimberlite pipe, Yakutia,” Lithos 39, 135–157 (1997).

    Article  Google Scholar 

  • N. V. Sobolev, A. M. Logvinova, D. A. Zedgenizov, Y. V. Seryotkin, E. S. Yefimova, C. Floss, and L. A. Taylor, “Mineral inclusions in microdiamonds and macrodiamonds from kimberlites of Yakutia: a comparative study,” Lithos 77, 225–242 (2004).

    Article  Google Scholar 

  • T. Stachel, “Diamonds from the asthenosphere and the transition zone,” Eur. J. Mineral. 13 (5), 883–892 (2001).

    Article  Google Scholar 

  • T. Stachel, J. W. Harris, G. P. Brey, and W. Joswig, “Kankan diamonds (Guinea) II: lower mantle inclusion parageneses,” Contrib. Mineral. Petrol. 140 (1), 16–27 (2000).

    Article  Google Scholar 

  • T. Stachel, A. Banas, K. Muehlenbachs, S. Kurszlaukis, and E. C. Walker, “Archean diamonds from Wawa (Canada): samples from deep cratonic roots predating cratonization of the Superior Province,” Contrib. Mineral. Petrol. 151 (6), 737–750 (2006).

    Article  Google Scholar 

  • T. Stachel, J. Harris, S. Aulbach, and P. Deines, “Kankan diamonds (Guinea) III: δ13C and nitrogen characteristics of deep diamonds,” Contrib. Mineral. Petrol. 142 (4), 465–475 (2002).

    Article  Google Scholar 

  • T. Stachel, G. P. Brey, and J. W. Harris “Inclusions in sublithospheric diamonds: glimpses of deep Earth,” Elements 1 (2), 73–78 (2005).

    Article  Google Scholar 

  • T. Stachel, J. W. Harris, and K. Muehlenbachs, “Sources of carbon in inclusion bearing diamonds,” Lithos 112, 625–637 (2009).

    Article  Google Scholar 

  • R. Tappert, J. Foden, T. Stachel, K. Muehlenbachs, M. Tappert, and K. Wills, “Deep mantle diamonds from South Australia: a record of Pacific subduction at the Gondwanan margin,” Geology 37 (1), 43–46 (2009).

    Article  Google Scholar 

  • R. Tappert, T. Stachel, J. W. Harris, K. Muehlenbachs, T. Ludwig, and G. P. Brey, “Subducting oceanic crust: the source of deep diamonds,” Geology 33, 565–568 (2005a).

    Article  Google Scholar 

  • R. Tappert, T. Stachel, J. W. Harris, K. Muehlenbachs, T. Ludwig, and G. P. Brey, “Diamonds from Jagersfontein (South Africa): messengers from the sublithospheric mantle,” Contrib. Mineral. Petrol. 150, 505–522 (2005b).

    Article  Google Scholar 

  • A. R. Thomson, S. C. Kohn, G. P. Bulanova, C. B. Smith, D. Araujo, EIMF, and M. J. Walter, “Origin of sub-lithospheric diamonds from the Juina-5 kimberlite (Brazil): constraints from carbon isotopes and inclusion compositions,” Contrib. Mineral. Petrol. 168, 1081 (2014).

    Article  Google Scholar 

  • M. J. Walter, G. P. Bulanova, L. S. Armstrong, S. Keshav, J. D. Blundy, G. Gudfinnsson, O. T. Lord, A. R. Lennie, S. M. Clark, C. B. Smith, and L. Gobbo, “Primary carbonatite melt from deeply subducted oceanic crust,” Nature 454, 622–626 (2008).

    Article  Google Scholar 

  • M. J. Walter, S. C. Kohn, D. Araujo, G. P. Bulanova, C. B. Smith, E. Gaillou, J. Wang, A. Steele, and S. B. Shirey, “Deep mantle cycling of oceanic crust: evidence from diamonds and their mineral inclusions,” Science 334, 54–57 (2011).

    Article  Google Scholar 

  • W. Wang and E. Takahashi, “Subsolidus and melting experiments of a K–rich basaltic composition to 27 GPa: Implication for the behavior of potassium in the mantle,” Am. Mineral. 84, 357–361 (1999).

    Article  Google Scholar 

  • W. Wang, S. Sueno, E. Takahashi, H. Yurimoto, and T. Gasparik, “Enrichment processes at the base of the Archean lithospheric msntle: observations from trace element characteristics of pyropic garnet inclusions in diamonds,” Contrib. Minerl. Petrol. 139, 720–733 (2000).

    Article  Google Scholar 

  • M. C. Wilding, A Study of Diamonds with Syngenetic Inclusions, PhD thesis. (University of Edinburgh, 1990)

    Google Scholar 

  • M. C. Wilding, B. Harte, and J. W. Harris, “Evidence for a deep origin for the Sao Luiz diamonds,” in 5th International Kimberlite Conference, Araxa, Brazil, (Araxa, 1991), pp. 456–458.

    Google Scholar 

  • D. A. Zedgenizov, H. Kagi, V. S. Shatsky, and A. L. Ragozin, “Local variations of carbon isotope composition in diamonds from Sao-Luis (Brazil): evidence for heterogenous carbon reservoir in sublithospheric mantle,” Chem. Geol. 363, 114–124 (2014a).

    Article  Google Scholar 

  • D. A. Zedgenizov, A. Shatskiy, A. L. Ragozin, H. Kagi, and V. S. Shatsky, “Merwinite in diamond from São Luiz, Brazil: a new mineral of the Ca–rich mantle environment,” Am. Mineral. 99, 547–550 (2014b).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Zedgenizov.

Additional information

Original Russian Text © D.A. Zedgenizov, A.L. Ragozin, V.V. Kalinina, H. Kagi, 2016, published in Geokhimiya, 2016, No. 10, pp. 919–930.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zedgenizov, D.A., Ragozin, A.L., Kalinina, V.V. et al. The mineralogy of Ca-rich inclusions in sublithospheric diamonds. Geochem. Int. 54, 890–900 (2016). https://doi.org/10.1134/S0016702916100116

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702916100116

Keywords

Navigation