Skip to main content
Log in

Physical bases of the generation of short-term earthquake precursors: A complex model of ionization-induced geophysical processes in the lithosphere-atmosphere-ionosphere-magnetosphere system

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

This paper describes the current understanding of the interaction between geospheres from a complex set of physical and chemical processes under the influence of ionization. The sources of ionization involve the Earth’s natural radioactivity and its intensification before earthquakes in seismically active regions, anthropogenic radioactivity caused by nuclear weapon testing and accidents in nuclear power plants and radioactive waste storage, the impact of galactic and solar cosmic rays, and active geophysical experiments using artificial ionization equipment. This approach treats the environment as an open complex system with dissipation, where inherent processes can be considered in the framework of the synergistic approach. We demonstrate the synergy between the evolution of thermal and electromagnetic anomalies in the Earth’s atmosphere, ionosphere, and magnetosphere. This makes it possible to determine the direction of the interaction process, which is especially important in applications related to short-term earthquake prediction. That is why the emphasis in this study is on the processes proceeding the final stage of earthquake preparation; the effects of other ionization sources are used to demonstrate that the model is versatile and broadly applicable in geophysics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Akopyan, S.Ts., Quantitative description of seismic processes based on seismic entropy, Izv., Phys. Solid Earth, 1998, vol. 34, no. 1, pp. 8–22.

    Google Scholar 

  • Anagnostopoulos, G.C., Vassiliadis, E., and Pulinets, S., Characteristics of flux-time profiles, temporal evolution, and spatial distribution of radiation-belt electron precipitation bursts in the upper ionosphere before great and giant earthquakes, Ann. Geophys., 2012, vol. 55, no. 1, pp. 21–36. doi 10.4401/ag-5365

    Google Scholar 

  • Astafyeva, E.I. and Afraimovich, E.L., Long-distance traveling ionospheric disturbances caused by the great Sumatra-Andaman earthquake on 26 December 2004, Earth, Planets Space, 2006, vol. 58, no. 8, pp. 1025–1031.

    Article  Google Scholar 

  • Bondur, V.G., Pulinets, S.A., and Kim, G.A., Role of variations in galactic cosmic rays in tropical cyclogenesis: Evidence of Hurricane Katrina, DAN. Geofizika, vol. 422, no. 7, pp. 1124–1129.

  • Bonfanti, P., Genzano, N., Heinicke, J., Italiano, F., Martinelli, G., Pergola, N., Telesca, L., and Tramutoli, V., Evidence of CO2-gas emission variations in the central Apennines (Italy) during the L’Aquila seismic sequence (March-April 2009), Boll. Geofis. Teor. Appl., 2012, vol. 53, no. 1, pp. 147–168.

    Google Scholar 

  • Boyarchuk, K.A., Karelin, A.V., and Shirokov, R.V., Bazovaya model’ kinetiki ionizirovannoi atmosfery (The Reference Model of Ionized Atmospheric Kinetics), Moscow: VNIIEM, 2006.

    Google Scholar 

  • Chernogor, L.F., Fizika i ekologiya katastrof (Physics and Ecology of Catastrophes), Kharkov: V.N. Karazin Kharkov National University, 2012.

    Google Scholar 

  • Cicerone, R.D., Ebel, J.E., and Britton, J., A systematic compilation of earthquake precursors, Tectonophysics, 2009, vol. 476, no. 3, pp. 371–396.

    Article  Google Scholar 

  • Davidenko, D.V., Diagnostics of ionospheric disturbances over seismically hazardous regions, Extended Abstract of Cand. Sci. (Phys. Math.) Dissertation, Institute of Applied Geophysics, Moscow, 2013.

    Google Scholar 

  • De Santis, A., Cianchini, G., Qamili, E., and Frepoli, A., The 2009 L’Aquila (Central Italy) seismic sequence as a chaotic process, Tectonophysics, 2010, vol. 496, no. 1, pp. 44–52.

    Article  Google Scholar 

  • De Santis, A., Cianchini, G., Favali, P., Beranzoli, L., and Boschi, E., The Gutenberg-Richter law and entropy of earthquakes: Two case studies in Central Italy, Bull. Seismol. Soc. Am., 2011, vol. 101, no. 3, pp. 1386–1395.

    Article  Google Scholar 

  • Dobrovolsky, I.P., Zubkov, S.I., and Myachkin, V.I., Estimation of the size of earthquake preparation zones, Pure Appl. Geophys., 1979, vol. 117, no. 5, pp. 1025–1044.

    Article  Google Scholar 

  • Dunajecka, M. and Pulinets, S.A., Atmospheric and thermal anomalies observed around the time of strong earthquakes in Mexico, Atmosfera, 2005, vol. 18, no. 4, pp. 233–247.

    Google Scholar 

  • Eddington, A., The Nature of the Physical World, Cambridge: Cambridge Univ. Press, 1928.

    Google Scholar 

  • Freund, F., Toward a unified solid state theory for pre-earthquake signals, Acta Geophys., 2010, vol. 58, no. 5, pp. 719–766. doi 10.2478/s11600-009-0066-x

    Article  Google Scholar 

  • Galvan, D.A., Komjathy, A., Hickey, M.P., Stephens, P., Snively, J., Tony Song, Y., Butala, M.D., and Mannucci, A.J., Ionospheric signatures of Tohoku-Oki tsunami of March 11, 2011: Model comparisons near the epicenter, Radio Sci., 2012, vol. 47, no. 4, p. RS4003. doi 10.1029/2012RS005023

    Google Scholar 

  • Giuliani, G.G., Giuliani, R., Totani, G., Eusani, G., and Totani, F., Radon observations by gamma detectors PM-4 and PM-2 during the seismic period (January-April 2009) in L’Aquila Basin, Abstr. AGU Fall Meeting, December 14–18, 2009, San-Francisco, 2009, vol. 1, p. 03, id #U14A-03.

  • Gringel, W., Rosen, J.M., and Hoffman, D.J., Electrical structure from 0 up to 30 kilometers, The Earth’s Electrical Environment, Washington D.C.: National Academic Press, 1986, pp. 166–182.

    Google Scholar 

  • Gringel, W. and Mühleisen, R., Sahara dust concentration in the troposphere over the North Atlantic derived from measurements of air conductivity, Beitr. Phys. Atmos., 1978, vol. 51, no. 2, pp. 121–128.

    Google Scholar 

  • Hirsikko, A., On formation, growth and concentrations of air ions, Rep. Ser. Aerosol Sci., 2011, no. 125.

  • Hõrrak, U., Air ion mobility spectrum at a rural area, Abstract of PhD (Geophys.) Dissertation, Univ. of Tartu, 2001, ch. 10: Contribution of air ion mobility classes to air conductivity.

    Google Scholar 

  • Hõrrak, U., Mirme, A., Salm, J., Tamm, E., and Tammet, H., Air ion measurements as a source of information about atmospheric aerosols, Atmos. Res., 1998, vol. 46, no. 3, pp. 233–242.

    Article  Google Scholar 

  • İnan, S., Akgül, T., Seyis, C., Saatčlar, R., Baykut, S., Ergintav, S., and Ba, M., Geochemical monitoring in the Marmara region (NW Turkey): A search for precursors of seismic activity, J. Geophys. Res., vol. 113, no. B03401. doi 10.1029/2007JB005206.2008

  • Jing, F., Shen, X.H., Kang, C.L., and Xiong, P., Variations of multi-parameter observations in atmosphere related to earthquake, Nat. Hazards Earth Syst. Sci., 2013, vol. 13, no. 1, pp. 27–33.

    Article  Google Scholar 

  • Kelley, M., The Earth’s Ionosphere: Plasma Physics and Electrodynamics, San Diego: Academic Press, 2009, ch. 3: Dynamics and Electrodynamics of the Equatorial Zone, pp. 71–129.

    Google Scholar 

  • Kim, V.P., Hegai, V.V., and Illich-Svitych, P.V., On one possible ionospheric precursor of earthquakes, Izv. Ross. Akad. Nauk, Fiz. Zemli, 1994, vol. 30, pp. 223–226.

    Google Scholar 

  • Kim, V.P., Pulinets, S.A., and Khegai, V.V., Theoretical model of possible disturbances in the nighttime mid-latitude ionospheric D region over an area of strong-earthquake preparation, Radiophys. Quantum Electron., 2002, vol. 45, no. 4, pp. 262–268.

    Article  Google Scholar 

  • Kim, V.P., Liu, J.Y., and Hegai, V.V., Modeling the pre-earthquake electrostatic effect on the F region iono-sphere, Adv. Space Res., 2012, vol. 50, no. 11, pp. 1524–1533.

    Article  Google Scholar 

  • Klimenko, M.V., Klimenko, V.V., Zakharenkova, I.E., Pulinets, S.A., Zhao, B., and Tzidilina, M.N., Formation mechanism of great positive TEC disturbances prior to Wenchuan earthquake on May 12, 2008, Adv. Space Res., 2011, vol. 48, no. 3, pp. 488–499.

    Article  Google Scholar 

  • Kondepudi, D. and Prigogine, I., Modern Thermodynamics: From Heat Engines to Dissipative Structures, Chichester: Wiley, 1998.

    Google Scholar 

  • Kuo, C.L., Huba, J.D., Joyce, G., and Lee, L.C., Iono-sphere plasma bubbles and density variations induced by preearthquake rock currents and associated surface charges, J. Geophys. Res., 2011, vol. 116, no. A10, A10317. doi 10.1029/2011JA016628

    Google Scholar 

  • Kuo, C.L., Lee, L.C., and Huba, J.D., An improved coupling model for the lithosphere–atmosphere–iono-sphere system, J. Geophys. Res.: Space Phys., 2014, vol. 119, no. A4, pp. 3189–3205. doi 10.1002/2013JA019392

    Article  Google Scholar 

  • Laakso, L., Mäkelä, J.M., Pirjola, L., and Kulmala, M., Model studies on ion-induced nucleation in the atmo-sphere, J. Geophys. Res., 2002, vol. 107, no. D20, pp. AAC 5-1–AAC-5-19. doi 10.1029/2002JD002140

    Google Scholar 

  • Laakso, L., Kulmala, M., and Lehtinen, K.E.J., Effect of condensation rate enhancement factor on 3-nm (diameter) particle formation in binary ion-induced and homo-geneous nucleation, J. Geophys. Res., 2003, vol. 108, no. D18. doi {rs10.1029/2003JD003432 DOI }

  • Levina, G.V., Moiseev, S.S., and Rutkevich, P.B., Hydro-dynamic alpha-effect in a convective system, Advances in Fluid Mechanics. Nonlinear Instability, Chaos and Turbulence, Debnath, L. and Riahi, D.N., Eds., Southampton, Boston: WIT Press, 2000, pp. 111–162.

    Google Scholar 

  • Li, K.C., Feng, J., Pan, X., and Chunyan, Q., Application of multi-parameter infrared remote sensing in seismic monitoring, Abstr. Int. Workshop of Earthquake Anomaly Recognition, 18-20 September, 2001, Shenyang, China.

  • Li, M. and Parrot, M., Statistical analysis of an ionospheric parameter as a base for earthquake prediction, J. Geophys. Res., 2013, vol. 118, no. A6, pp. 3731–3739. doi 10.1002/jgra.50313

    Article  Google Scholar 

  • Liperovsky, V.A., Pokhotelov, O.A., Meister, K.V., and Liperovskaya, E.V., Physical models of coupling in the lithosphere–atmosphere–ionosphere system before earthquakes, Geomagn. Aeron. (Engl. Transl.), 2008, vol. 48, no. 6, pp. 795–806.

    Article  Google Scholar 

  • Liu, J.-Y., Tsai, Y.-B., Ma, K.-F., Chen, Y.-I., Tsai, H.-F., Lin, C.-H., Kamogawa, M., and Lee, C.-P., Iono-spheric GPS total electron content (TEC) disturbances triggered by the 26 December 2004 Indian Ocean tsunami, J. Geophys. Res., 2006, vol. 111, no. A5. doi 10.1029/2005JA011200

    Google Scholar 

  • Liu, Z., Luo, W., Ding, X., and Chen, W., The new characteristics of ionospheric Total Electron Content (TEC) disturbances prior to four large earthquakes, Abstr. of the 7th Annual Seminar on Spatial Information Science and Technology (ASSIST2011), Hong-Kong, 2011.

    Google Scholar 

  • Mareev, E.A., Global electric circuit research: Achievements and prospects, Phys.-Usp., 2010, vol. 53, no. 5, pp. 504–511.

    Article  Google Scholar 

  • Markson, R., The global circuit intensity: Its measurement and variation over the last 50 years, Bull. Am. Meteorol. Soc., 2007, vol. 88, no. 2, pp. 223–241. doi 10.1175/BAMS-88-2223

    Article  Google Scholar 

  • Martinelli, G., Solecki, A.T., Tchorz-Trzeciakiewicz, D.E., Piekarz, M., and Grudzinska, K.K., Laboratory experiments on radon 222 exposure effects on local environmental temperature: Implications for satellite TIR measurements, Abstr. of the EGU General Assembly, April 27-May 2, 2014, Vienna, Austria, Id. 3175.

    Google Scholar 

  • Mil’kis, M.R., Meteorological precursors of strong earthquakes, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1986, no. 3, pp. 36–47.

    Google Scholar 

  • Morozova, L.I., Cloud indicators of the Earth’s crust geodynamics, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1993, no. 10, pp. 108–112.

    Google Scholar 

  • Morozova, L.I., Sputnikovyi monitoring zemletryasenii (Satellite Monitoring of Earthquakes), Vladivostok: Dal’nauka, 2005.

    Google Scholar 

  • Namgaladze, A.A., Zolotov, O.V., Karpov, M.I., and Romanovskaya, Y.V., Manifestations of the earthquake preparations in the ionosphere total electron content variations, Nat. Sci., 2012, vol. 4, no. 11, pp. 848–855.

    Google Scholar 

  • Ouzounov, D., Liu, D., Chunli, K., Cervone, G., Kafatos, M., and Taylor, P., Outgoing longwave radiation variability from IR satellite data prior to major earthquakes, Tectonophysics, 2007, vol. 431, no. 1, pp. 211–220.

    Article  Google Scholar 

  • Ouzounov, D., Pulinets, S., Hattori, K., Liu, J.-Y., and Kafatos, M., Validation of atmospheric signals associated with major earthquakes by a synergy of multi-parameter space and ground observations, Abstr. of the Asia-Oceania Geosciences Society 2011 Meeting (AOGS2011), August 8–12, 2011, Taipei, Taiwan, IWG13-A011.

    Google Scholar 

  • Ouzounov, D., Pulinets, S., Davidenko, D., Hattori, K., Kafatos, M., and Taylor, P., Multi-sensor observations of earthquake-related atmospheric signals over major geohazard validation sites, Abstr. of the AGU 45th Annual Fall Meeting, December 3-7, 2012, San Francisco, CA, United States, NH44A-05.

    Google Scholar 

  • Papadopoulos, G.A., Real-time seismicity evaluation for operational earthquake forecasting: Recent experiences from Italy and Greece, Lecture at Chapman University, Orange, CA, United States, 2009.

    Google Scholar 

  • Park, C.G. and Dejnakarintra, M., Penetration of thundercloud electric fields into the ionosphere and magneto-sphere: 1. Middle and subauroral latitudes, J. Geophys. Res., 1973, vol. 78, no. 28, pp. 6623–6633.

    Article  Google Scholar 

  • Pergola, N., Aliano, C., Coviello, I., Filizzola, C., Genzano, N., Lacava, T., Lisi, M., Mazzeo, G., and Tramutoli, V., Using RST approach and EOS-MODIS radiances for monitoring seismically active regions: A study on the 6 April 2009 Abruzzo earthquake, Nat. Hazards Earth Syst. Sci., 2010, vol. 10, no. 2, pp. 239–249. doi 10.5194/nhess-10-239-2010

    Article  Google Scholar 

  • Plastino, W., Povinec, P., De Luca, G., Doglioni, C., Nisi, S., Ioannucci, L., Balata, M., Laubenstein, M., Bella, F., and Coccia, E., Uranium groundwater anomalies and L’Aquila earthquake, 6th April 2009 (Italy), J. Environ. Radioact., 2010, vol. 101, no. 1, pp. 45–50.

    Article  Google Scholar 

  • Pulinets, S.A., Physical mechanism of the vertical electric field generation over active tectonic faults, Adv. Space Res., 2009, vol. 44, no. 6, pp. 767–773.

    Article  Google Scholar 

  • Pulinets, S.A., The synergy of earthquake precursors, Earthquake Sci., 2011a, vol. 24, no. 6, pp. 535–548.

    Article  Google Scholar 

  • Pulinets, S., A multi-parameter approach to earthquake forecasting, Exec. Intell. Rev., 2011b, vol. 38, no. 16, pp. 26–35.

    Google Scholar 

  • Pulinets, S., Low-latitude atmosphere-ionosphere effects initiated by strong earthquakes preparation process, International Journal of Geophysics. Article ID, vol. 2012, p. 2012.

  • Pulinets, S.A. and Boyarchuk, K.A., Ionospheric Precursors of Earthquakes, Berlin: Springer, 2004.

    Google Scholar 

  • Pulinets, S. and Davidenko, D., Ionospheric precursors of earthquakes and global electric circuit, Adv. Space Res., 2014, vol. 53, no. 5, pp. 709–723.

    Article  Google Scholar 

  • Pulinets, S. and Ouzounov, D., Lithosphere-atmosphere-ionosphere coupling (LAIC) model—a unified concept for earthquake precursors validation, J. Asian Earth Sci., 2011, vol. 41, nos. 4–5, pp. 371–382.

    Article  Google Scholar 

  • Pulinets, S.A. and Ouzounov, D., Satellite technologies have no alternative: On the problem of monitoring over natural and technogenic catastrophes, Tr. Inst. Prikl. Geofiz. im. Akad. E. K. Fedorova, 2010, no. 89, pp. 173–185.

    Google Scholar 

  • Pulinets, S.A., Khegai, V.V., Boyarchuk, K.A., and Lomonosov, A.M., The atmospheric electric field as a source of variability in the ionosphere, Phys.-Usp., 1998, vol. 41, no. 5, pp. 515–523.

    Article  Google Scholar 

  • Pulinets, S.A., Boyarchuk, K.A., Hegai, V.V., Kim, V.P., and Lomonosov, A.M., Quasielectrostatic model of atmosphere—thermosphere–ionosphere coupling, Adv. Space Res., 2000, vol. 26, no. 8, pp. 1209–1218.

    Article  Google Scholar 

  • Pulinets, S.A., Boyarchuk, K.A., Hegai, V.V., and Karelin, A.V., Conception and model of seismo–iono-sphere–magnetosphere coupling, Seismo-Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling, Hayakawa, M. and Molchanov, O.A., Eds., Tokyo: TERRAPUB, 2002, pp. Ð. 353–361.

    Google Scholar 

  • Pulinets, S.A., Ouzounov, D., Karelin, A.V., Boyarchuk, K.A., and Pokhmelnykh, L.A., The physical nature of the thermal anomalies observed before strong earthquakes, Phys. Chem. Earth, 2006, vol. 31, nos. 4–9, pp. 143–153.

    Article  Google Scholar 

  • Pulinets, S., Kafatos, M., Cervone, G., Ouzounov, D., and Singh, R., Energies associated with the Sumatra Earthquakes of December 26, 2004 and March 28, 2005, Abstr. of the EGU 2007 Fall Meeting, San Francisco, United States, 2007, S42–04.

    Google Scholar 

  • Pulinets, S.A., Ouzounov, D.P., Giuliani, G.G., Ciraolo, L., and Taylor, P.T., Atmosphere and radon activities observed prior to Abruzzo M6.3 earthquake of April 6, 2009, Abstr. of the AGU Fall Meeting, December 14–18, 2009, U14A-07.

    Google Scholar 

  • Pulinets, S.A., Morozova, L.I., and Yudin, I.A., Synchronization of atmospheric indicators at the last stage of earthquake preparation cycle, Res. Geophys., 2014, vol. 4, no. 1, pp. 45–50.

    Google Scholar 

  • Pulinets, S.A., Ouzounov, D.P., Davidenko, D.V., Tsadikovskii, E.I., and Dudkin, S.A., Prognoz zemletryasenii vozmozhen?! Integral’nye tekhnologii mnogoparamet-richeskogo monitoringa geoeffektivnykh yavlenii v ramkakh kompleksnoi modeli vzaimosvyazei v litosfere, atmosfere i ionosfere Zemli (Is Earthquake Forecasting Possible? Integral Technologies of Multiparameter Monitoring over Geoeffective Phenomena in the Framework of the Complex Model of the Earth’s Lithosphere-Atmosphere-Ionosphere Coupling), Moscow: Trovant, 2014.

    Google Scholar 

  • Rozhnoi, A., Solovieva, M., Molchanov, O., Schwingenschuh, K., Boudjada, M., Biagi, P.F., Maggipinto, T., Castellana, L., Ermini, A., and Hayakawa, M., Anomalies in VLF radio signals prior the Abruzzo earthquake (M = 6.3) on 6 April 2009, Nat. Hazards Earth Syst. Sci., 2009, vol. 9, no. 5, pp. 1727–1732.

    Article  Google Scholar 

  • Rycroft, M.J., Nicoll, K.A., Aplin, K.L., and Harrison, R.G., Recent advances in global electric circuit coupling between the space environment and the troposphere, J. Atmos. Sol.-Terr. Phys., 2012, vol. 90–91, pp. 198–211.

    Article  Google Scholar 

  • Scholz, C.H., Sykes, L.R., and Aggarwal, Y.P., Earthquake prediction: A physical basis, Science, 1973, no. 4102, pp. 803–810.

    Article  Google Scholar 

  • Segovia, N., Pulinets, S.A., Leyva, A., Mena, M., Monnin, M., Camacho, M.E., Ponciano, M.G., and Fernandez, V., Ground radon exhalation, an electrostatic contribution for upper atmospheric layers processes, Radiat. Meas., 2005, vol. 40, no. 2–6, pp. 670–672.

    Article  Google Scholar 

  • Sekimoto, K. and Takayama, M., Influence of needle voltage on the formation of negative core ions using atmospheric pressure corona discharge in air, Int. J. Mass Spectrom., 2007, vol. 261, no. 1, pp. 38–44.

    Article  Google Scholar 

  • Sorokin, V.M., Plasma and electromagnetic effects in the ionosphere related to the dynamics of charged aerosols in the lower atmosphere, Russ. J. Phys. Chem. B, 2007, vol. 1, no. 2, pp. 138–170.

    Article  Google Scholar 

  • Spivak, A.A., Bulk activity of subsoil radon in tectonic disturbance areas, Geofizika mezhgeosfernykh vzaimodeistvii (Geophysics of Inter-Geospheric Interactions), Moscow: GEOS, 2008, pp. 235–247.

    Google Scholar 

  • Stull, R.B., An Introduction to Boundary Layer Meteorology, Dordrecht, Boston, London: Kluwer Academic, 1988.

    Book  Google Scholar 

  • Svensmark, H. and Friis-Christensen, E., Variation of cosmic ray flux and global cloud coverage—a missing link in solar—climate relationships, J. Atmos. Sol.-Terr. Phys., 1997, vol. 59, no. 11, pp. 1225–1232.

    Article  Google Scholar 

  • Svensmark, H., Pedersen, J.O.P., Marsch, N.D., Enghoff, M.B., and Uggerhøj, U.I., Experimental evidence for the role of ions in particle nucleation under atmospheric conditions, Proc. R. Soc. London, Ser. A, 2007, vol. 463, pp. 385–396.

    Article  Google Scholar 

  • Thacker, B.H., Doebling, S.W., Hemez, F.M., Anderson, M.C., Pepin, J.E., and Rodriguez, E.A., Concepts of model verification and validation, Rep. LA-14167-MS, Los-Alamos National Laboratory, 2004.

    Book  Google Scholar 

  • Williams, E.R., The global electrical circuit: A review, Atmos. Res., 2009, vol. 91, no. 2–4, pp. 140–152.

    Article  Google Scholar 

  • Wilson, C.T.R., Investigations on lightning discharges and on the electric field of thunderstorms, Philos. Trans. R. Soc., A, 1921, vol. 221, pp. 73–115.

    Article  Google Scholar 

  • Wu, H.C. and Tikhonov, I.N., Jet streams anomalies as possible short-term precursors of earthquakes with M > 6.0, Res. Geophys., 2014, vol. 4, no. 1, pp. 12–18.

    Article  Google Scholar 

  • Yu, F. and Turco, R.P., From molecular clusters to nanoparticles: The role of ambient ionization in tropospheric aerosol formation, J. Geophys. Res., 2001, vol. 106, no. D5, pp. 4797–4814.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Pulinets.

Additional information

Original Russian Text © S.A. Pulinets, D.P. Ouzounov, A.V. Karelin, D.V. Davidenko, 2015, published in Geomagnetizm i Aeronomiya, 2015, Vol. 55, No. 4, pp. 540–558.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pulinets, S.A., Ouzounov, D.P., Karelin, A.V. et al. Physical bases of the generation of short-term earthquake precursors: A complex model of ionization-induced geophysical processes in the lithosphere-atmosphere-ionosphere-magnetosphere system. Geomagn. Aeron. 55, 521–538 (2015). https://doi.org/10.1134/S0016793215040131

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793215040131

Keywords

Navigation