Skip to main content
Log in

Computational study of interaction of bromine ions with clusters (O2)6(H2O)50 and (O3)6(H2O)50

  • Thermophysical Properties of Materials
  • Published:
High Temperature Aims and scope

Abstract

Interaction of bromine ions with water clusters that have absorbed the molecules of oxygen and ozone is studied using a molecular-dynamics simulation of flexible molecules. The cases of location of Br ions on the surface and in the bulk of the cluster are described. Water clusters with ozone molecules remain stable during their interaction with the Br ions, while oxygen molecules are found to evaporate from the cluster when Br ions appear in its bulk. In the presence of Br ions, the infrared spectra of systems with O3 molecules are observed to be intensified. The intensities of the IR spectra with O2 molecules may both increase and decrease depending on the arrangement of the Br ions. The Raman spectra are sensitive to the appearance of Br ions only for systems that contain oxygen molecules. As a result of interaction with the Br ions, the power of IR radiation emitted by the clusters can not only increase, but also decrease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rudich, Y., Chem. Rev., 2003, vol. 103, p. 5097.

    Article  Google Scholar 

  2. Ellison, G.B., Tuck, A.F., and Vaida, V., J. Geophys. Res., 1999, vol. 104, p. 11633.

    Article  ADS  Google Scholar 

  3. Bertram, A.K., Ivanov, A.V., Hunter, M., Molina, L.T., and Molina, M.J., J. Phys. Chem. A, 2001, vol. 105, p. 9415.

    Article  Google Scholar 

  4. Gomez, A.L., Park, J., Walser, M.L., Lin, A., and Nizkorodov, C.A., J. Phys. Chem. A, 2006, vol. 110, p. 3584.

    Article  Google Scholar 

  5. Falkovich, A.H., Schkolnik, G., Ganor, E., and Rudich, Y., J. Geophys. Res., 2004, vol. 109, p. D02208/1.

    Article  Google Scholar 

  6. Tervahattu, H., Juhanoja, J., and Kupiainen, K., J. Geophys. Res., 2002, vol. 107, p. ACH18/1.

    Google Scholar 

  7. Donaldson, D.J. and Anderson, D., J. Phys. Chem. A, 1999, vol. 103, p. 871.

    Article  Google Scholar 

  8. Thomas, E.R., Frost, G.J., and Rudich, Y., J. Geophys. Res., 2001, vol. 106, p. 3045.

    Article  ADS  Google Scholar 

  9. Moise, T. and Rudich, Y., J. Phys. Chem. A, 2002, vol. 106, p. 6469.

    Article  Google Scholar 

  10. Eliason, T.L., Aloisio, S., Donaldson, D.J., Cziczo, D.J., and Vaida, V., Atmos. Environ., 2003, vol. 37, p. 2207.

    Article  Google Scholar 

  11. Galashev, A.E., Teplofiz. Vys. Temp., 2010, vol. 48, no. 4, p. 544.

    Google Scholar 

  12. Galashev, A.E., Rakhmanova, O.R., and Chukanov, V.N., Teplofiz. Vys. Temp., 2009, vol. 47, no. 3, p. 360.

    Google Scholar 

  13. Novruzova, O.A. and Galashev, A.E., Teplofiz. Vys. Temp., 2008, vol. 46, no. 1, p. 66.

    Google Scholar 

  14. Galashev, A.E., Rakhmanova, O.R., and Novruzova, O.A., Teplofiz. Vys. Temp., 2011, vol. 49, no. 2, p. 201.

    Google Scholar 

  15. Dang, L.X. and Chang, T.-M., J. Chem. Phys., 1997, vol. 106, p. 8149.

    Article  ADS  Google Scholar 

  16. Spravochnik khimika (The Chemist’s Handbook), Nikol’skii, B.P., Ed., Leningrad: Khimiya, 1971, vol. 1.

    Google Scholar 

  17. Galashev, A.E., Rakhmanova, O.R., and Chukanov, V.N., Khim. Fiz., 2005, vol. 24, no. 3, p. 90.

    Google Scholar 

  18. Spackman, M.A., J. Chem. Phys., 1986, vol. 85, p. 6579.

    Article  ADS  Google Scholar 

  19. Spackman, M.A., J. Chem. Phys., 1986, vol. 85, p. 6587.

    Article  ADS  Google Scholar 

  20. Hunt, S.W., J. Phys. Chem. A, 2004, vol. 108, p. 11559.

    Article  Google Scholar 

  21. Fanourgakis, G.S., Apra, E., and Xantheas, S.S., J. Chem. Phys., 2004, vol. 121, p. 2655.

    Article  ADS  Google Scholar 

  22. Xantheas, S., J. Chem. Phys., 1996, vol. 104, p. 8821.

    Article  ADS  Google Scholar 

  23. Lemberg, H.L. and Stillinger, F.H., J. Chem. Phys., 1975, vol. 62, p. 1677.

    Article  ADS  Google Scholar 

  24. Rahman, A., Stillinger, F.H., and Lemberg, H.L., J. Chem. Phys., 1975, vol. 63, p. 5223.

    Article  ADS  Google Scholar 

  25. Saint-Martin, H., Hess, B., and Berendsen, H.J.C., J. Chem. Phys., 2004, vol. 120, p. 11133.

    Article  ADS  Google Scholar 

  26. Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., DiNola, A., and Haak, J.R., J. Chem. Phys., 1984, vol. 81, p. 3684.

    Article  ADS  Google Scholar 

  27. Haile, J.M., Molecular Dynamics Simulation: Elementary Methods, New York: Wiley, 1992.

    Google Scholar 

  28. Koshlyakov, V.N., Zadachi dinamiki tverdogo tela i prikladnoi teorii giroskopov (Problems in the Dynamics of the Solid State and the Applied Theory of Gyroscopes), Moscow: Nauka, 1985.

    Google Scholar 

  29. Sonnenschein, R., J. Comput. Phys., 1985, vol. 59, p. 347.

    Article  ADS  MATH  Google Scholar 

  30. Bresme, F., J. Chem. Phys., 2001, vol. 115, p. 7564.

    Article  ADS  Google Scholar 

  31. Neumann, M., J. Chem. Phys., 1985, vol. 82, p. 5663.

    Article  ADS  Google Scholar 

  32. Bosma, W.B., Fried, L.E., and Mukamel, S., J. Chem. Phys., 1993, vol. 98, p. 4413.

    Article  ADS  Google Scholar 

  33. Huiszoon, C., Mol. Phys., 1986, vol. 58, p. 865.

    Article  ADS  Google Scholar 

  34. Fizicheskaya entsiklopediya (The Physical Encyclopedia), Prokhorov, A.M., Ed., Moscow: Sovetskaya Entsiklopediya, 1988, vol. 1, p. 702.

    Google Scholar 

  35. Landau, L.D. and Lifshitz, E.M., Teoreticheskaya fizika (Course of Theoretical Physics), vol. 8: Elektrodinamika sploshnykh sred (Electrodynamics of Continuous Media), Moscow: Nauka, 1982.

    Google Scholar 

  36. Neumann, M., J. Chem. Phys., 1986, vol. 85, p. 1567.

    Article  ADS  Google Scholar 

  37. Angell, C.A. and Rodgers, V., J. Chem. Phys., 1984, vol. 80, p. 6245.

    Article  ADS  Google Scholar 

  38. Goggin, P.L. and Carr, C., Far-Infrared Spectroscopy and Aqueous Solutions: Water and Aqueous Solutions, Bristol: Adam Hilger, 1986, vol. 37, p. 149.

    Google Scholar 

  39. Potapova, G.F., Klochikhin, V.L., Putilov, A.V., Kasatkin, E.V., and Kozlova, N.V., Ozone-Peroxide Electrochemical Cleaning of Water, in Sbornik tezisov dokladov. I Vserossiiskaya konferentsiya “Ozon i drugie ekologicheski chistye okisliteli. Nauka i tekhnologii,” 2005 (Abstracts of Papers of the First All-Russian Conference “Ozone and Other Environment Friendly Oxidants: Science and Technologies,” Moscow, Russia, June 7–9, 2005), Moscow: Moscow State University, 2005, p. 260.

    Google Scholar 

  40. Upschulte, B.L., Green, B.D., Blumberg, W.A., and Lipson, S.J., J. Phys. Chem., 1994, vol. 98, p. 2328.

    Article  Google Scholar 

  41. Kozintsev, V.I., Belov, M.L., Gorodnichev, V.A., and Fedotov, Yu.V., Lazernyi optiko-akusticheskii analiz mnogokomponentnykh gazovykh smesei (Laser Photoacoustic Analysis of Multicomponent Gas Mixtures), Moscow: Bauman Moscow State Technical University, 2003.

    Google Scholar 

  42. Vallee, P., Lafait, J., Ghomi, M., Jouanne, M., and Morhange, J.F., J. Mol. Struct., 2003, vols. 651–653, p. 371.

    Article  Google Scholar 

  43. Goldschleger, I.U., Kerenskaya, G., Janda, K.C., and Apkarian, V.A., J. Phys. Chem. A, 2008, vol. 112, p. 787.

    Article  Google Scholar 

  44. Andrews, L. and Spiker, R.C., Jr., J. Phys. Chem., 1972, vol. 76, p. 3208.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.E. Galashev, O.R. Rakhmanova, O.A. Novruzova, 2011, published in Teplofizika Vysokikh Temperatur, 2011, Vol. 49, No. 4, pp. 546–556.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galashev, A.E., Rakhmanova, O.R. & Novruzova, O.A. Computational study of interaction of bromine ions with clusters (O2)6(H2O)50 and (O3)6(H2O)50 . High Temp 49, 528–538 (2011). https://doi.org/10.1134/S0018151X11040080

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X11040080

Keywords

Navigation