Skip to main content
Log in

Model of the behavior of aluminum and aluminum-based mixtures under shock-wave loading

  • Thermophysical Properties of Materials
  • Published:
High Temperature Aims and scope

Abstract

A thermodynamically equilibrium model is applied to describe the behavior of solid and porous materials. This model ensures good compliance with the experiment in a wide range of pressures. The gas in pores, which is a component of the medium, is taken into account in this model. The equation of state of the Mie-Grüneisen type with allowance for the dependence of the Grüneisen coefficient on temperature is used for condensed phases. The applied model allows the behavior of the aluminum with a porosity from 1 to 8 to be calculated under shock-wave loading at pressures above 5 GPa in the one-velocity and one-temperature approximations, as well as on the assumption of equal pressures for all the phases. Computational results are compared with the well-known experimental results obtained by different authors (shock adiabats, double compression by shock waves, and temperature estimation). The model permits the shock-wave loading of solid and porous mixtures with aluminum in their composition to be described reliably solely by using species parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Charakhch’yan, A.A., Milyavskii, V.V., and Khishchenko, K.V., High Temp., 2009, vol. 47, no. 2, p. 235.

    Article  Google Scholar 

  2. Milyavskii, V.V., Fortov, V.E., Frolova, A.A., Khishchenko, K.V, Charakhch’yan, A.A., and Shurshalov, L.V., Zh. Vychisl. Mat. Mat. Fiz., 2006, vol. 46, no. 5, p. 913.

    MathSciNet  Google Scholar 

  3. Fomin, V.M., Gulidov, A.I., Sapozhnikov, G.I., Shabalin, I.I., Babakov, V.A., Kuropateko, V.F., Kiselev, A.B., Trishin, Yu.A., Sadyrin, A.I., Kiselev, S.P., and Golovnev, I.F., Vysokoskorostnoe vzaimodeistvie tel (High-Speed Interaction of Bodies), Novosibirsk: Siberian Branch of the Russian Academy of Sciences, 1999.

    Google Scholar 

  4. Bushman, A.F. and Fortov, V.E., Sov. Phys.-Usp., 1983, vol. 26, no. 6, p. 465.

    Article  ADS  Google Scholar 

  5. Kopyshev, V.K. and Medvedev, A.B., in Vysokie plotnosti energii (High Energy Densities), Sarov: Russian Federal Nuclear Center-All-Russian Research Institute of Experimental Physics, 1997.

    Google Scholar 

  6. High_Pressure Shock Compression: Volume VII. Shock Waves and Extreme States of Matter, Fortov, V.E., Al’tshuler, L.V., Trunin, R.F., and Funtikov, A.I., Eds., Berlin: Springer_Verlag, 2004.

    Google Scholar 

  7. Trunin, R.F., Issledovaniya ekstremal’nykh sostoyanii kondensirovannykh veshchestv metodom udarnykh voln. Uravneniya Gyugonio (Investigations of Extreme States of Condensed Materials by Shock Waves: Hugoniot Equations), Sarov: Russian Federal Nuclear Center-All-Russian Research Institute of Experimental Physics, 2006.

    Google Scholar 

  8. Nikolaev, D.N., Pyalling, A.A., Khishchenko, K.V., Ternovoi, V.Ya., and Fortov, V.E., Khim. Fiz., 2000, vol. 19, no. 10, p. 98.

    Google Scholar 

  9. Kinelovskii, S.A., Maevskii, K.K., and Rodikov, A.S., Vestn. Novosib. Gos. Univ., Ser. Fiz., 2008, vol. 3, no. 1, p. 3.

    Google Scholar 

  10. Kinelovskii, S.A. and Maevskii, K.K., Vestn. Novosib. Gos. Univ., Ser. Fiz., 2009, vol. 4, no. 4, p. 71.

    Google Scholar 

  11. Golubev, V.K., Khim. Fiz., 2002, vol. 21, no. 10, p. 30.

    Google Scholar 

  12. Boehler, R. and Ramakrishnan, J., J. Geophys. Res., B, 1980, vol. 85, p. 6996.

    Article  ADS  Google Scholar 

  13. Ashcroft, N.W. and Mermin, N.D., Solid State Physics, Rochester, New York: Saunders College, 1976, vol. 2, p. 422.

    Google Scholar 

  14. Belashchenko, D.K., Vorotyagin, A.V., and Gelchinsky, B.R., High Temp., 2011, vol. 49, no. 5, p. 656.

    Article  Google Scholar 

  15. Molodets, A.M. and Molodets, M.A., Khim. Fiz., 1997, vol. 16, no. 5, p. 122.

    Google Scholar 

  16. Gudarenko, L.F., Gushchina, O.N., Zhernokletov, M.V., Medvedev, A.B., and Simakov, G.V., High Temp., 2000, vol. 38, no. 3, p. 413.

    Article  Google Scholar 

  17. Levashov, P.R., Khishchenko, K.V., Lomonosov, I.V., and Fortov, V.E., in Proceedings of the Conference of the American Physical Society “Shock Compression of Condensed Matter-2003,” Furnish M.D., Gupta Y.M., and Forbes J.W., Eds., Melville, New York: American Institute of Physics, 2004, p. 87. http://www.ihed.ras.ru/rusbank/, http://www.ficp.ac.ru/rusbank/.

  18. Trunin, R.F., Gudarenko, L.F., Zhernokletov, M.V., and Simakov, G.V., Eksperimental’nye dannye po udarno-volnovomu szhatiyu i adiabaticheskomu rasshireniyu kondensirovannykh veshchestv (Experimental Data on Shock Compression and Adiabatic Expansion of Condensed Matter), Sarov: Russian Federal Nuclear Center-All-Russian Research Institute of Experimental Physics, 2006.

    Google Scholar 

  19. Al’tshuler, L.B and Chekin, B.S., in Sbornik dokladov I Vsesoyuznogo simpoziuma po impul’snym davleniyam, Moscow, VNIIFTRI, 1974 (Proceedings of the First All-Union Symposium on Pulse Pressures, All-Union Scientific Research Institute of Physico-Technical and Radiotechnical Measurements, Moscow, 1974), Moscow: All-Union Scientific Research Institute of Physico-Technical and Radiotechnical Measurements, 1974, vol. 1, p. 5.

    Google Scholar 

  20. Knudson, M.D., Lemke, R.W., Hayes, D.B., Hall, C.A., Deeney, C., and Asay, J.R., J. Appl. Phys., 2003, vol. 94, no. 7, p. 4420.

    Article  ADS  Google Scholar 

  21. Isbell, W.H., Shipman, F.H., and Jones, A.H., Hugoniot Equation of State Measurements for Eleven Materials to Five Megabars, Warren, Michigan, United States: General Motors Technical Center, Materials and Structures Laboratory, 1968, Tech. Rep. MSL-68-13.

    Google Scholar 

  22. Al’tshuler, L.B. and Kalitkin, H.H., Kuz’mina, L.V., and Chekin B.S., Sov. Phys. JETP, 1977, vol. 45, no. 1, p. 167.

    ADS  Google Scholar 

  23. Simonenko, V.A., Voloshin, N.P., Vladimirov, A.S., Nagibin, A.P., Nogin, V.N., Popov, V.A., Sal’nikov, V.A., and Shoidin, Yu.A., Sov. Phys. JETP, 1985, vol. 61, no. 4, p. 869.

    Google Scholar 

  24. Podurets, M.A., Ktitorov, V.M., Trunin, R.F., Popov, L.V., Matveev, A.Ya., Pechenkin, B.V., and Sevast’yanov, A.G., Teplofiz. Vys. Temp., 1994, vol. 32, no. 6, p. 952.

    Google Scholar 

  25. Compendium of Shock Wave Data, Van Thiel, M., Ed., Livermore: Lawrence Livermore Laboratory, 1977, Rep. UCRL-50108, p. 87.

    Google Scholar 

  26. Kormer, S.B., Funtikov, A.I., Urlin, V.D., and Kolesnikova, A.I., Sov. Phys. JETP, 1962, vol. 15, no. 3, p. 477.

    Google Scholar 

  27. Compendium of Shock Wave Data, Van Thiel, M., Ed., Livermore: Lawrence Livermore Laboratory, 1977, Rep. UCRL-50108, p. 85.

    Google Scholar 

  28. Bakanova, A.A., Dudoladov, I.P., and Sutulov, Yu.N., Prikl. Mekh. Tekh. Fiz., 1974, no. 2, p. 117.

    Google Scholar 

  29. Al’tshuler, L.V. and Petrunin, A.P., Sov. Phys. Tech. Phys., 1961, vol. 6, p. 516.

    Google Scholar 

  30. Nellis, W.J., Mitchell, A.C., and Young, D.A., J. Appl. Phys., 2003, vol. 93, no. 1, p. 304.

    Article  ADS  Google Scholar 

  31. Podurets, M.A., Simakov, G.V., and Trunin, R.F., Izv. Akad. Nauk SSSR, Fiz. Zemli, 1990, no. 4, p. 30.

    Google Scholar 

  32. Al’tshuler, L.V., Kormer, S.B., and Bakanova, A.A., Sov. Phys. JETP, 1960, vol. 11, p. 573.

    Google Scholar 

  33. Compendium of Shock Wave Data, Van Thiel, M., Ed., Livermore: Lawrence Livermore Laboratory, 1977, Rep. UCRL-50108, p. 610.

    Google Scholar 

  34. Compendium of Shock Wave Data, Van Thiel, M.,, Livermore: Lawrence Livermore Laboratory, 1977, Rep. UCRL-50108, p. 339.

    Google Scholar 

  35. Bakanova, A.A., Bugaeva, V.A., Dudoladov, I.P., and Trunin, R.F., Izv. Akad. Nauk SSSR, Fiz. Zemli, 1995, no. 6, p. 58.

    Google Scholar 

  36. LASL Shock Hugoniot Data, Marsh, S.P., Ed., Berkeley, California, United States: University of California Press, 1980.

    Google Scholar 

  37. Alekseev, Yu.F., Al’tshuler, L.V., and Krupnikova, V.P., Prikl. Mekh. Tekh. Fiz., 1971, no. 4, p. 152.

    Google Scholar 

  38. Kinelovskii, S.A. and Maevskii, K.K., J. Appl. Mech. Tech. Phys., 2013, vol. 54, no. 4, p. 524.

    Article  ADS  Google Scholar 

  39. Maevskii, K.K. and Kinelovskii, S.A., in Trudy Nauchno-koordinatsionnoi sessii “Issledovaniya neideal’noy plazmy,” Moscow, 2012 (Proceedings of the Scientific-Coordination Session on Non-Ideal Plasma Physics, Moscow, December 6–7, 2012,) Moscow, 2012. http://www.ihed.ras.ru/npp2012/.

    Google Scholar 

  40. Gryaznov, V.K., Zhernokletov, M.V., Iosilevskii, I.L., Simakov, G.V., Trunin, R.F., Trusov, L.I., and Fortov, V.E., J. Exp. Theor. Phys., 1998, vol. 87, no. 4, p. 678.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Kinelovskii.

Additional information

Original Russian Text © S.A. Kinelovskii, K.K. Maevskii, 2014, published in Teplofizika Vysokikh Temperatur, 2014, Vol. 52, No. 6, pp. 843–851.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kinelovskii, S.A., Maevskii, K.K. Model of the behavior of aluminum and aluminum-based mixtures under shock-wave loading. High Temp 52, 821–829 (2014). https://doi.org/10.1134/S0018151X14050083

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X14050083

Keywords

Navigation