Skip to main content
Log in

Ion velocity distribution function in intrinsic gas plasma under conditions of resonance recharging as a main process. Experiment

  • Plasma Investigations
  • Published:
High Temperature Aims and scope

Abstract

For the first time, the ion distribution function over energies and directions of the motion for He+ in He and Ar+ in Ar is measured at the arbitrary value of the electric field by the method of the plane onesided probe. The experiment is carried out under conditions when the ion velocity acquired at the mean free path is on the order of and larger than the average thermal velocity of atoms and resonance recharging is the dominating process in plasma. The obtained results make it possible to conclude that, in independent gas discharge plasma, even at moderate fields where E/P = 10–20 V (cm Torr), the ion distribution function can have noticeable anisotropy and can strongly differ from the Maxwellian distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ivanov, Yu.A. and Polak, L.S., in Khimiya plazmy (Chemistry of Plasma), Smirnov, B.M., Ed., Moscow: Atomizdat, 1975, p. 161.

  2. Sena, L.A., Zh. Eksp. Teor. Fiz., 1946, vol. 16, p. 734.

    Google Scholar 

  3. Kagan, Yu.M. and Perel’ V.I., Dokl. Akad. Nauk SSSR, 1954, vol. 98, p. 575.

    Google Scholar 

  4. Kagan, Yu.M. and Perel’ V.I., Zh. Eksp. Teor. Fiz., 1955, vol. 29, p. 884.

    Google Scholar 

  5. Smirnov, B.M., Zh. Tekh. Fiz., 1966, vol. 36, p. 1864.

    Google Scholar 

  6. Perel’, V.I., Zh. Eksp. Teor. Fiz., 1957, vol. 32, p. 526.

    Google Scholar 

  7. Fok, V.A., Zh. Eksp. Teor. Fiz., 1948, vol. 18, p. 1048.

    Google Scholar 

  8. Golant, V.E., Zhilinskii, A.P., Sakharov, S.A., Osnovy fiziki plazmy (Fundamentals of Plasma Physics), Moscow: Atomizdat, 1977.

    Google Scholar 

  9. Ender, A.Ya. and Ender, I.A., Tech. Phys., 2010, vol. 55, no. 2, p. 166.

    Article  Google Scholar 

  10. Ender, A.Ya., Ender, I.A., and Gerasimenko, A.B., Tech. Phys., 2010, vol. 55, no. 2, p. 176.

    Article  Google Scholar 

  11. Else, D., Kompaneets, R., and Vladimirov, S.V., Phys. Plasmas, 2009, vol. 16, p. 62106.

    Article  Google Scholar 

  12. Viehland, L.A. and Mason, E.A., Ann. Phys. (New York), 1975, vol. 91, p. 499.

    Article  ADS  Google Scholar 

  13. White, R.D., Robson, R.E., Dujko, S., Nicoletopoulos, P., and Li, B., J. Phys. D: Appl. Phys., 2009, vol. 42, 194001.

    Article  ADS  Google Scholar 

  14. Bhatnagar, P.L., Gross, E.P., and Krook, M., Phys. Rev., 1954, vol. 94, p. 511.

    Article  ADS  Google Scholar 

  15. Frish, S.E. and Kagan, Yu.M., Zh. Eksp. Teor. Fiz., 1947, vol. 17, p. 577.

    Google Scholar 

  16. Israel, D., Riemann, K.-U., and Tsendin, L., J. Appl. Phys., 2006, vol. 99, 093303.

    Article  ADS  Google Scholar 

  17. O’Connell, D., Zorat, A.R., Ellingboe, A.R., and Turner, M.M., Phys. Plasmas, 2007, vol. 14, 103510.

    Article  ADS  Google Scholar 

  18. Chen, W.C., Zhu, X.M., Zhang, S., and Pu, Y.K., Appl. Phys. Lett., 2009, vol. 94, 211503.

    Article  ADS  Google Scholar 

  19. Mustafaev, A.S., Sukhomlinov, V.S., and Ainov, M.A., Tech. Phys., 2015, vol. 60, no. 12, p. 1778.

    Article  Google Scholar 

  20. Phelps, A.V., J. Phys. Chem. Ref. Data, 1991, vol. 20, p. 557.

    Article  ADS  Google Scholar 

  21. Lapshin, V.F. and Mustafaev, A.S., Zh. Tekh. Fiz., 1989, vol. 59, no. 2, p. 35.

    Google Scholar 

  22. Mustafaev, A.S., Tech. Phys., 2001, vol. 46, no. 4, p. 472.

    Article  Google Scholar 

  23. Volkova, L.M., Demidov, V.I., Kolokolov, N.B., and Kral’kina, E.A., High Temp., 1984, vol. 22, no. 4, p. 612.

    ADS  Google Scholar 

  24. Mustafaev, A.S., Mezentsev, A.P., and Simonov, V.Ya., Zh. Tekh. Fiz., 1984, vol. 54, p. 2153.

    Google Scholar 

  25. Mott-Smith, H.M. and Langmuir, I., Phys. Rev., 1926, vol. 28, p. 727.

    Article  ADS  Google Scholar 

  26. Lebedev, Yu.A., Electrical probes in low-pressure plasma. http://plasma.karelia.ru/pub/fntp/Lebedev.pdf

  27. Mustafaev, A.S. and Grabovskii, A.Yu., High Temp., 2012, vol. 50, no. 6, p. 785.

    Article  Google Scholar 

  28. Demidov, V.I., Kolokolov, N.B., and Kudryavtsev, A.A., Zondovye metody issledovaniya nizkotemperaturnoi plazmy (Probe Methods for Studying Low-Temperature Plasma), Moscow: Energoatomizdat, 1996.

    Google Scholar 

  29. Ivanov, Yu.A., Lebedev, Yu.A., and Polak, L.S., Metody kontaktnoi diagnostiki v neravnovesnoi plazmokhimii (Methods of Contact Diagnosis in Nonequilibrium Plasma Chemistry), Moscow: Nauka, 1981.

    Google Scholar 

  30. Berger, E. and Heisen, A., J. Phys. D: Appl. Phys., 1975, vol. 8, p. 629.

    Article  ADS  Google Scholar 

  31. Ovsyannikov, A.A., Engel’sht, V.A., and Lebedev, Yu.A., Diagnostika nizkotemperaturnoi plazmy (Diagnostics of Low-Temperature Plasma), Novosibirsk: Nauka, 1994.

    Google Scholar 

  32. Swift, J.D. and Schwar, M.J.R., Electrical Probes for Plasma Diagnostics, London: Iliffe Books, 1970.

    Google Scholar 

  33. Demidov, V.A. and Godyak, V.I., J. Phys. D: Appl. Phys., 2011, vol. 44, 233001.

    Article  ADS  Google Scholar 

  34. Mustafaev, A.S., Funktsiya raspredeleniya elektronov v anizotropnoi plazme (The Electron Distribution Function in Anisotropic Plasma), St. Petersburg: Nats. Mineral’no-Syr’evoi Univ. “Gornyi,” 2013.

    Google Scholar 

  35. Mustafaev, A.S., Probe method for investigation of anisotropic EVDF, in Electron Kinetics and Applications of Glow Discharges, Tsendin, L. and Kortshagen, U., Eds., New York: Plenum, 1998, NATO Int. Sci. Session, 1998, vol. 367, p. 531.

    Google Scholar 

  36. Mustafaev, A.S., Tech. Phys., 2004, vol. 49, no. 9, p. 1224.

    Article  Google Scholar 

  37. Mustafaev, A.S., Movchan, I.B., and Mezentsev, A.P., Tech. Phys., 2000, vol. 45, no. 11, p. 1399.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Mustafaev.

Additional information

Original Russian Text © A.S. Mustafaev, V.S. Sukhomlinov, M.A. Ainov, 2017, published in Teplofizika Vysokikh Temperatur, 2017, Vol. 55, No. 3, pp. 359–365.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mustafaev, A.S., Sukhomlinov, V.S. & Ainov, M.A. Ion velocity distribution function in intrinsic gas plasma under conditions of resonance recharging as a main process. Experiment. High Temp 55, 346–351 (2017). https://doi.org/10.1134/S0018151X17030178

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X17030178

Navigation