Skip to main content
Log in

Study on Local Heat Transfer in the Vicinity of the Contact Line under Vapor Bubbles at Pool Boiling

High Temperature Aims and scope

Abstract

The results of an experimental study of the dynamics of local heat transfer at nucleate pool boiling of liquids are presented. Experimental data on the nucleation site density and the evolution of the temperature field underneath individual vapor bubbles were obtained by high-speed infrared thermography with high spatial and temporal resolutions. Deionized water and ethanol at the saturation line under atmospheric pressure were used as working liquids. Evolution of the distribution of the local heat flux rate in the region of an individual nucleation site has been constructed based on numerical simulation. It has been shown that the maximum rate of the local heat flux is observed in the region of the liquid microlayer during the period of vapor bubble growth and reaches a value exceeding the average heat flux rate by 15–20 times. Based on the results, the thickness of the microlayer underneath the vapor bubble during the period of the bubble growth was estimated. The estimates satisfactorily agree with experimental literature data obtained with the use of laser interferometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Murshed, S.M.S. and de Castro, C.A.N., Renewable Sustainable Energy Rev., 2017, vol. 78, p. 821.

    Article  Google Scholar 

  2. Hewitt, G.F., Shires, G.L., and Bott, T.R., Process Heat Transfer, Boca Raton, FL: CRC, 1994.

    Google Scholar 

  3. Yagov, V.V., Teploobmen v odnofaznykh sredakh i pri fazovykh prevrashcheniyakh (Heat Transfer in Single-Phase Media and in Phase Transformations), Moscow: Mosk. Energ. Inst., 2014.

    Google Scholar 

  4. Dhir, V.K., J. Heat Transfer, 2006, vol. 128, no. 1, p. 1.

    Article  Google Scholar 

  5. Son, G. and Dhir, V.K., Int. J. Heat Mass Transfer, 2008, vol. 51, no. 9, p. 2566.

    Article  Google Scholar 

  6. Kharangate, C.R. and Mudawar, I., Int. J. Heat Mass Transfer, 2017, vol. 108, p. 1164.

    Article  Google Scholar 

  7. Podowski, M.Z., Nucl. Eng. Technol., 2012, no. 8, p. 889.

    Article  Google Scholar 

  8. Moore, F.D. and Mesler, R.B., AIChE J., 1961, vol. 7, no. 4, p. 620.

    Article  Google Scholar 

  9. Labuntsov, D.A., Inzh.-Fiz. Zh., 1963, vol. 6, no. 4, p. 33.

    Google Scholar 

  10. Cooper, M.G. and Lloyd, A.J.P., Int. J. Heat Mass Transfer, 1969, vol. 12, no. 8, p. 895.

    Article  Google Scholar 

  11. Theofanous, T.G., Tu, J.P., Dinh, A.T., and Dinh, T.N., Exp. Therm. Fluid Sci., 2002, vol. 26, no. 6, p. 775.

    Article  Google Scholar 

  12. Gerardi, C., Buongiorno, J., Hu, L.W., and McKrell, T., Int. J. Heat Mass Transfer, 2010, vol. 53, no. 19, p. 4185.

    Article  Google Scholar 

  13. Surtaev, A.S. and Pavlenko, A.N., Int. J. Heat Mass Transfer, 2014, vol. 74, p. 342.

    Article  Google Scholar 

  14. Petkovsek, J., Heng, Y., Zupancic, M., Gjerkes, H., Cimerman, F., and Golobic, I., Int. J. Refrig., 2016, vol. 61, p. 127.

    Article  Google Scholar 

  15. Surtaev, A.S., Serdyukov, V.S., and Moiseev, M.I., Instrum. Ex. Tech., 2016, no. 4, p. 140.

    Google Scholar 

  16. Jung, S. and Kim, H., Heat Transfer Eng., 2015, vol. 36, no. 12, p. 1002.

    Article  ADS  Google Scholar 

  17. Jung, S. and Kim, H., Int. J. Heat Mass Transfer, 2014, vol. 73, p. 365.

    Article  Google Scholar 

  18. Gao, M., Zhang, L., Cheng, P., and Quan, X., Int. J. Heat Mass Transfer, 2013, vol. 57, no. 1, p. 183.

    Article  Google Scholar 

  19. Chen, Z., Haginiwa, A., and Utaka, Y., Int. J. Heat Mass Transfer, 2017, vol. 108, p. 1285.

    Article  Google Scholar 

  20. Surtaev, A.S. and Serdyukov, V.S., Thermophys. Aeromech., 2018, vol. 25, no. 1, p. 67.

    Article  ADS  Google Scholar 

  21. Labuntsov, D.A., Teploenergetika, 1972, no. 9, p. 14.

    Google Scholar 

  22. Yagov, V.V., Teploenergetika, 1988, no. 2, p. 4.

    Google Scholar 

  23. Yao, Z., Lu, Y.W., and Kandlikar, S.G., Int. J. Thermal Sci., 2011, vol. 50, no. 11, p. 2084.

    Article  Google Scholar 

  24. Borishanskii, V.M., Bobrovich, G.I., inMinchenko, F.P., in Voprosy teplootdachi i gidravliki dvukhfaznykh sred (Problems of Heat Transfer and Hydraulics of Two-Phase Media), Moscow, 1961, p. 75.

    Google Scholar 

  25. Rallis, C.J. and Jawurek, H.H., Int. J. Heat Mass Transfer, 1964, vol. 7, no. 10, p. 1051.

    Article  Google Scholar 

  26. Golovin, V.S., Kol’chugin, B.A., and Zakharova, E.A., in Sb. tr. nauch. issl. inst. im. G.M. Krzhizhanovskogo (Proc. Krzhizhanovskii Res. Inst.), 1976, no. 35, p. 30.

    Google Scholar 

  27. Labuntsov, D.A., Izv. Akad. Nauk SSSR, Energ. Transp., 1963, vol. 1, p. 58.

    Google Scholar 

  28. Benjamin, R.J. and Balakrishnan, A.R., Exp. Therm. Fluid Sci., 1997, vol. 15, no. 1, p. 32.

    Article  Google Scholar 

  29. Golovin, V.S., Extended Abstracts of Cand. Sci. (Tech.) Dissertation, Moscow: Energ. Res. Inst., 1967.

    Google Scholar 

  30. Yin, S.T. and Abdelmessih, A.H., AIChE Symp. Ser., 1977, vol. 73, no. 164, p. 236.

    Google Scholar 

  31. Ametistov, E.V., Klimenko, V.V., and Pavlov, Yu.M., Kipenie kriogennykh zhidkostei (Boiling of Cryogenic Liquids), Moscow: Energoatomizdat, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Serdyukov.

Additional information

Original Russian Text © V.S. Serdyukov, A.S. Surtaev, A.N. Pavlenko, A.N. Chernyavskiy, 2018, published in Teplofizika Vysokikh Temperatur, 2018, Vol. 56, No. 4, pp. 561–567.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serdyukov, V.S., Surtaev, A.S., Pavlenko, A.N. et al. Study on Local Heat Transfer in the Vicinity of the Contact Line under Vapor Bubbles at Pool Boiling. High Temp 56, 546–552 (2018). https://doi.org/10.1134/S0018151X18040168

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X18040168

Navigation