Skip to main content
Log in

Bi0.9M0.1FeO3 (M = La, Pr, Nd, Sm) Multiferroics: Thermophysical Properties at High Temperatures

  • THERMOPHYSICAL PROPERTIES OF MATERIALS
  • Published:
High Temperature Aims and scope

Abstract

Comprehensive studies of the thermophysical properties (thermal conductivity, thermal diffusivity, heat capacity, thermal expansion coefficient) of solid solutions of the Bi0.9M0.1FeO3 (M = La, Pr, Nd, Sm) multiferroics have been carried out within the temperature range of 300–800 K. Anomalies of the thermophysical properties caused by phase transitions are observed within the Néel temperature domain (640–650 K). Formulas are proposed for the calculation of the studied thermophysical properties within the domains of the structural phase transitions, and a clear correlation is established for the dependences of the thermophysical properties within the domain of the structural phase transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Smolenski, G.A. and Yudin, V.M., Sov. Phys. Solid State, 1965, vol. 6, no. 12, p. 3668.

    Google Scholar 

  2. Catalan, G. and Scott, F., Adv. Mater., 2009, vol. 21, p. 2463.

    Article  Google Scholar 

  3. Pyatakov, A.P. and Zvezdin, A.K., Phys.—Usp., 2012, vol. 55, no. 6, p. 557.

    Article  ADS  Google Scholar 

  4. Karimi, S., Reaney, I.M., Han, Y., Pocorny, J., and Sterianoy, I., J. Mater. Sci., 2009, vol. 44, p. 5102.

    Article  ADS  Google Scholar 

  5. Verbenko, I.A. and Reznichenko, L.A., in Tr. II Mezhdun. molodezhnogo simp. “Fizika bessvintsovykh p’ezoaktivnykh i rodstvennykh materialov (Analiz sovremennogo sostoyaniya i perspektivy razvitiya)” (Proc. II Int. Youth Symp. “Physics of Lead-Free Piezoactive and Related Materials (State-of-the-Art and Prospects)”), Rostov-on-Don, 2013, vol. 1, no. 2, p. 65.

  6. Khasbulatov, S.V., Pavelko, A.A., Verbenko, I.A., Shilkina, L.A., Aleshin, V.A., Gadzhiev, G.G., Omarov, Z.M., Abdullaev, Kh.Kh., Bakmaev, A.G., Magomedov, M.-R., and Reznichenko, L.A., in Sb. tr. XI Mezhdun. seminara “Magnitnye fazovye perekhody” (Proc. XI Int. Conf. on Magnetic Phase Transitions), Makhachkala, 2015, p. 100.

  7. Karpinsky, D.V., Troyanchuk, I.O., and Zheludkevich, A.L., Phys. Solid State, 2016, vol. 58, no. 8, p. 1590.

    Article  ADS  Google Scholar 

  8. Khasbulatov, S.V., Pavelko, A.A., Shilkina, L.A., Reznichenko, L.A., Gadzhiev, G.G., Bakmaev, A.G., Magomedov, M.M., Omarov, Z.M., and Aleshin, V.A., Thermophys. Aeromech., 2016, vol. 23, no. 3, p. 445.

    Article  ADS  Google Scholar 

  9. Magomedov, Ya.B. and Gadzhiev, G.G., Teplofiz. Vys. Temp., 1990, vol. 28, no. 1, p. 185.

    Google Scholar 

  10. Magomedov, M.-R, Kamilov, I.K., Omarov, Z.M., Ismailov, Sh.M., Khamidov, M.M., and Rasulov, M.M., Prib. Tekh. Eksp., 2007, no. 4, p.165.

  11. Kallaev, S.N., Omarov, Z.M., Gadzhiev, G.G., and Reznichenko, L.A., J. Exp. Theor. Phys., 2014, vol. 118, no. 2, p. 279.

    Article  ADS  Google Scholar 

  12. Kallaev, S.N., Sadykov, S.A., Omarov, Z.M., Kurbaitaev, A.Ya., Reznichenko, L.A., and Khasbulatov, S.V., Phys. Solid State, 2016, vol. 58, no. 4, p. 682.

    Article  ADS  Google Scholar 

  13. Kallaev, S.N., Omarov, Z.M., Gadzhiev, G.G., Mitarov, R.G., Bilalov, A.R., Reznichenko, L.A., Ferzilaev, R.M., and Sadykov, S.A., Phys. Solid State, 2014, vol. 56, no. 7, p. 1412.

    Article  ADS  Google Scholar 

  14. Kallaev, S.N., Bakmaev, A.G., and Reznichenko, L.A., JETP Lett., 2013, vol. 97, no. 8, p. 470.

    Article  ADS  Google Scholar 

  15. Gadzhiev, G.G., Khasbulatov, S.V., Reznichenko, L.A., Abdullaev, Kh.Kh., Omarov, Z.M., and Magomedov, M.M., in Tr. V Mezhdun. mezhdists. simp. “Sredy so strukturnym i magnitnym uporyadocheniem” (Multiferroics-5) (Proc. V Int. Interdiscip. Symp. “Media with Structural and Magnetic Ordering” (Multiferroics-5)), Rostov-on-Don, 2015, p. 112.

  16. Klyndyuk, A.I. and Khort, A.A., Phys. Solid State, 2016, vol. 58, no. 6, p. 1285.

    Article  ADS  Google Scholar 

  17. Gadzhiev, G.G. Ismailov, Sh.M., and Khamidov, M.M., Russ. J. Appl. Chem., 1999, vol. 72, no. 10, p. 1698.

    Google Scholar 

  18. Gadzhiev, G.G. and Ismailov, Sh.M., Teplofiz. Vys. Temp., 1993, vol. 31, no. 3, p. 390.

    Google Scholar 

  19. Gadzhiev, G.G., High Temp., 2003, vol. 41, no. 6, p. 778.

    Article  Google Scholar 

Download references

Funding

The work was performed within the framework of the government assignment of the Ministry for Education and Science of the Russian Federation, project nos. 3.6371.2017/8.9 and 3.6439.2017/8.9, with the use of equipment from the Electromagnetic, Electromechanical, and Thermal Properties of Solids Center for Collective Use at the Research Institute of Physics of Southern Federal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Gadzhiev.

Additional information

Translated by I. Dikhter

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gadzhiev, G.G., Omarov, Z.M., Magomedov, MR.M. et al. Bi0.9M0.1FeO3 (M = La, Pr, Nd, Sm) Multiferroics: Thermophysical Properties at High Temperatures. High Temp 57, 477–481 (2019). https://doi.org/10.1134/S0018151X19040059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X19040059

Navigation