Skip to main content
Log in

Tungsten carbides and W-C phase diagram

  • Published:
Inorganic Materials Aims and scope

Abstract

The crystal structures of the tungsten monocarbide δ-WC and the disordered lower carbide β-W2C are studied. Using magnetic susceptibility measurements, the hexagonal carbide δ-WC is shown to be stable from 300 to 1200 K. The sequence of phase transformations associated with β-W2C ordering is analyzed. The temperature and composition stability limits of the cubic carbide γ-WC1−x are evaluated, and the first data are presented on the variation of its lattice parameter with composition. An optimized W-C phase diagram is proposed which takes into account detailed structural and phase-equilibrium data for tungsten carbides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Gusev, A.I. and Rempel, A.A., Nestekhiometriya, besporyadok i poryadok v tverdom tele (Nonstoichiometry, Disorder, and Order in Solids), Yekaterinburg: Ural. Otd. Ross. Akad. Nauk, 2001.

    Google Scholar 

  2. Gusev, A.I., Rempel, A.A., and Magerl, A.J., Disorder and Order in Strongly Nonstoichiometric Compounds: Transition Metal Carbides, Nitrides, and Oxides, Berlin: Springer, 2001.

    Google Scholar 

  3. Storms, E.K., The Refractory Carbides, New York: Academic, 1967. Translated under the title Tugoplavkie karbidy, Moscow: Atomizdat, 1970.

    Google Scholar 

  4. Moissan, H., Préparation au four électrique de quelques métaux réfractaires: tungstène, molybdène, vanadium, Compt. Rend., 1893, vol. 116, pp. 1225–1227.

    Google Scholar 

  5. Rudy, E. and Windisch, S., Evidence to Zeta Fe2N-Type Sublattice Order in W2C at Intermediate Temperatures, J. Am. Ceram. Soc., 1967, vol. 50, no. 5, pp. 272–273.

    CAS  Google Scholar 

  6. Rudy, E., Compendium of Phase Diagram Data. Ternary Phase Equilibria in Transition Metal-Boron-Carbon-Silicon Systems, Report AFML IR-65-2, Wright-Patterson Air Force Base (Ohio), 1969.

    Google Scholar 

  7. Rudy, E. and Hoffman, J.R., Phasengleichgewichte im Bereich der kubischen Karbidphase im System Wolfram-Kohlenstoff, Planseeber. Pulvermetall., 1967, vol. 15, no. 3, pp. 174–178.

    CAS  Google Scholar 

  8. Sara, R.V., Phase Equilibrium in the System Tungsten-Carbon, J. Am. Ceram. Soc., 1965, vol. 48, no. 5, pp. 251–257.

    CAS  Google Scholar 

  9. Rempel, A.A., Würschum, R., and Schaefer, H.-E., Atomic Defects in Hexagonal Tungsten Carbide Studied by Positron Annihilation, Phys. Rev. B: Condens. Matter, 2000, vol. 61, no. 9, pp. 5945–5948.

    CAS  Google Scholar 

  10. Klemm, W. and Schüth, W., Magnetochemische Untersuchungen: 3. Über den Magnetismus einiger Carbide und Nitride, Z. Anorg. Allg. Chem., 1931, vol. 201, no. 1, pp. 24–31.

    CAS  Google Scholar 

  11. Lander, J.J. and Germer, L.H., Plating Molybdenum, Tungsten, and Chromium by Thermal Decomposition of Their Carbonyls, Trans. AIME, 1948, vol. 175, pp. 661–691.

    Google Scholar 

  12. Lautz, G. and Schneider, D., Über die Supraleitung in den Wolframkarbiden W2C und WC, Z. Naturforsch., A, 1961, vol. 16, no. 12, pp. 1368–1372.

    Google Scholar 

  13. Parthe, E. and Sadagopan, V., The Structure of Dimolybdenum Carbide by Neutron Diffraction Technique, Acta Crystallogr., 1963, vol. 16, no. 3, pp. 202–205.

    CAS  Google Scholar 

  14. Butorina, L.N. and Pinsker, Z.G., Electron Diffraction Study of W2C, Kristallografiya, 1960, vol. 5, no. 4, pp. 585–588.

    CAS  Google Scholar 

  15. Rudy, E., Windisch, S., and Hoffman, J.R., W-C System: Supplemental Information on the Mo-C System. Ternary Phase Equilibria in Transition Metal-Boron-Carbon-Silicon Systems (Part I. Related Binary Systems, vol. VI), Report AFML-TR-65-2, Wright-Patterson Air Force Base (Ohio), 1966, pp. 1–50.

    Google Scholar 

  16. Goldschmidt, H.J. and Brand, J.A., The Tungsten-Rich Region of the System Tungsten-Carbon, J. Less-Common Met., 1963, vol. 5, no. 2, pp. 181–194.

    Article  CAS  Google Scholar 

  17. Ronsheim, P., Toth, L.E., Mazza, A., et al., Direct Current Arc-Plasma Synthesis of Tungsten Carbides, J. Mater. Sci., 1981, vol. 16, no. 10, pp. 2665–2674.

    Article  CAS  Google Scholar 

  18. Willens, R.H. and Buehler, E., The Superconductivity of the Monocarbides of Tungsten and Molybdenum, Appl. Phys. Lett., 1965, vol. 7, no. 1, pp. 25–26.

    Article  CAS  Google Scholar 

  19. Willens, R.H., Buehler, E., and Matthias, B.T., Superconductivity of the Transition-Metal Carbides, Phys. Rev., 1967, vol. 159, no. 2, pp. 327–330.

    Article  CAS  Google Scholar 

  20. Krainer, E. and Robitsch, J., Röntgenographischer Nachweis des kubischen Wolframkarbides in funkenerosiv bearbeiteten Hartmetallen und in reinen Wolframschmelkarbiden, Planseeber. Pulvermetall., 1967, vol. 15, no. 1, pp. 46–56.

    CAS  Google Scholar 

  21. Krainer, E. and Robitsch, J., Zur Frage des kubischen Wolframkarbids, Planseeber. Pulvermetall., 1967, vol. 15, no. 3, pp. 179–180.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.S. Kurlov, A.I. Gusev, 2006, published in Neorganicheskie Materialy, 2006, Vol. 42, No. 2, pp. 156–163.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurlov, A.S., Gusev, A.I. Tungsten carbides and W-C phase diagram. Inorg Mater 42, 121–127 (2006). https://doi.org/10.1134/S0020168506020051

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168506020051

Keywords

Navigation