Skip to main content
Log in

Electrical conductivity and thermal stability of (1 − x)CsH2PO4/xSiP y O z (x = 0.2–0.7) composites

  • Published:
Inorganic Materials Aims and scope

Abstract

The physicochemical properties of (1 − x)CsH2PO4/xSiP y O z (x = 0.2–0.7) composites containing fine-particle silicon phosphates as heterogeneous additives have been studied at different humidities. The introduction of silicon phosphates suppresses the superionic phase transition of CsH2PO4 and increases the low-temperature conductivity of the materials, which depends significantly on humidity. The CsH2PO4-SiP y O z materials offer high conductivity (∼3 × 10−3 to 10−2 S/cm at ∼110–230°C) at low water vapor pressures (3 mol % H2O). Amorphization of the CsH2PO4 in the composites markedly changes its thermodynamic properties. The effect of long-term isothermal holding (210°C, 3 mol % H2O) on the conductivity of the composites has been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baranov, A.I., Khiznichenko, V.P., Sandler, V.A., and Shuvalov, L.A., Frequency Dielectric Dispersion in the Ferroelectric and Superionic Phases of CsH2PO4, Ferroelectrics, 1988, vol. 81, pp. 183–186.

    Google Scholar 

  2. Romain, F. and Novak, A., Raman-Study of the High-Temperature Phase-Transition in CsH2PO4, J. Mol. Struct., 1991, vol. 263, pp. 69–74.

    Article  CAS  Google Scholar 

  3. Bronowska, W., Comment on “Does the Structural Superionic Phase Transition at 231 Degrees C in CsH2PO4 Really Not Exist?” J. Chem. Phys., 2001, vol. 114, no. 1, pp. 611–612.

    Article  CAS  Google Scholar 

  4. Colomban, Ph. and Novak, A., Anhydrous Materials: Oxonium Perchlorate, Acid Phosphates, Arsenates, Sulphates, and Selenates, Chemistry of Solid State Materials, vol. 2: Proton Conductors, Colomban, Ph., Ed., Cambridge: Cambridge Univ. Press, 1992, pp. 165–182.

    Google Scholar 

  5. Boysen, D.A. and Haile, S.M., High Temperature Behavior of CsH2PO4 under Both Ambient and High Pressure Conditions, Chem. Mater., 2003, vol. 15, pp. 727–736.

    Article  CAS  Google Scholar 

  6. Uda, T. and Haile, S.M., Thin-Membrane Solid-Acid Fuel Cell, Electrochem. Solid-State Lett., 2005, vol. 8, no. 5, pp. A245–A246.

    Article  CAS  Google Scholar 

  7. Otomo, J., Minagawa, N., Wen, C., et al., Protonic Conduction of CsH2PO4 and Its Composite with Silica in Dry and Humid Atmospheres, Solid State Ionics, 2003, vol. 156, pp. 357–369.

    Article  CAS  Google Scholar 

  8. Ponomareva, V.G., Lavrova, G.V., and Simonova, L.G., The Influence of Heterogeneous Dopant Porous Structure on the Properties of Protonic Solid Electrolyte in the CsHSO4-SiO2 System, Solid State Ionics, 1999, vol. 118, pp. 317–323.

    Article  CAS  Google Scholar 

  9. Ponomareva, V.G. and Lavrova, G.V., The Investigation of Disordered Phases in Nanocomposite Proton Electrolytes Based on MeHSO4 (Me = Rb, Cs, K), Solid State Ionics, 2001, vol. 145, pp. 197–204.

    Article  CAS  Google Scholar 

  10. Ponomareva, V.G. and Shutova, E.S., High-Temperature Behavior of CsH2PO4 and CsH2PO4-SiO2 Composites, Solid State Ionics, 2007, vol. 178, pp. 729–734.

    Article  CAS  Google Scholar 

  11. Ponomareva, V.G. and Shutova, E.S., Medium-Temperature Proton Conductors Based on CsH2PO4 and Modified Silica, Elektrokhimiya, 2007, vol. 43, no. 5, pp. 521–527.

    CAS  Google Scholar 

  12. Matsui, T., Kukino, T., Kikuchi, R., and Eguchi, K., An Intermediate Temperature Proton-Conducting Electrolyte Based on a CsH2PO4/SiP2O7 Composite, Electrochem. Solid-State Lett., 2005, vol. 8, no. 5, pp. A256–A258.

    Article  CAS  Google Scholar 

  13. Matsui, T., Kukino, T., Kikuchi, R., and Eguchi, K., Intermediate-Temperature Fuel Cell Employing CsH2PO4/SiP2O7-Based Composite Electrolytes, J. Electrochem. Soc., 2006, vol. 153, pp. A339–A342.

    Article  CAS  Google Scholar 

  14. Lavrova, G.V., Burgina, E.B., Matvienko, A.A., and Ponomareva, V.G., Bulk and Surface Properties of Ionic Salt CsH5(PO4)2, Solid State Ionics, 2006, vol. 177, pp. 1117–1122.

    Article  CAS  Google Scholar 

  15. Nirsha, B.M., Gudinitsa, E.N., Fakeev, A.A., et al., Thermal Dehydration of CsH2PO4, Zh. Neorg. Khim., 1982, vol. 27, no. 6, pp. 1366–1369.

    CAS  Google Scholar 

  16. Powder Diffraction File, Swarthmore: Joint Committee on Powder Diffraction Standards, card 18-1165.

  17. Powder Diffraction File, Swarthmore: Joint Committee on Powder Diffraction Standards, card 18-1167.

  18. Powder Diffraction File, Swarthmore: Joint Committee on Powder Diffraction Standards, card 40-457.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Ponomareva.

Additional information

Original Russian Text © V.G. Ponomareva, E.S. Shutova, G.V. Lavrova, 2008, published in Neorganicheskie Materialy, 2008, Vol. 44, No. 9, pp. 1131–1136.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ponomareva, V.G., Shutova, E.S. & Lavrova, G.V. Electrical conductivity and thermal stability of (1 − x)CsH2PO4/xSiP y O z (x = 0.2–0.7) composites. Inorg Mater 44, 1009–1014 (2008). https://doi.org/10.1134/S0020168508090185

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168508090185

Keywords

Navigation