Skip to main content
Log in

Synthesis of copper ferrite nanoparticles

  • Published:
Inorganic Materials Aims and scope

Abstract

Pseudospherical copper ferrite particles 20 to 90 nm in average size were prepared by an aerosol method through condensation of iron and copper vapors in an inert-gas flow, followed by the oxidation of the resulting two-phase powder under heterogeneous combustion conditions to an almost single-phase product. The nanoparticles were characterized by scanning electron microscopy, X-ray diffraction, BET measurements, and vibrating-sample magnetometry. Analysis of the X-ray diffraction data and the behavior of the magnetization of reaction intermediates and final synthesis products in the range 400–1100 K made it possible to propose models for the nanostructure of the particles and establish the likely sequence of the observed phase transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sun, Z.P., Liu, L., Jia, D.Z., and Pan, W.Y., Simple synthesis of CuFe2O4 nanoparticles as gas-sensing materials, Sens. Actuators, B, 2007, vol. 125, pp. 144–148.

    Article  CAS  Google Scholar 

  2. Li, J.J., Yuan, H.M., Li, G.D., et al., Cation distribution dependence of magnetic properties of sol-gel prepared MnFe2O4 spinel ferrite nanoparticles, J. Magn. Magn. Mater., 2010, vol. 322, pp. 3396–3400.

    Article  CAS  Google Scholar 

  3. Wu, X.H., Wu, W.W., Zhou, K.W., et al., Products and non-isothermal kinetics of thermal decomposition of MgFe2(C2O4)3 · 6H2O, J. Therm. Anal. Calorim., 2011, vol. 110, pp. 781–787.

    Article  Google Scholar 

  4. Li, F.S., Wang, H.B., Wang, L., and Wang, J.B., Magnetic properties of ZnFe2O4 nanoparticles produced by a low-temperature solid-state reaction method, J. Magn. Magn. Mater., 2007, vol. 309, pp. 295–299.

    Article  CAS  Google Scholar 

  5. Wu, W.W., Cai, J.C., Wu, X.H., et al., Magnetic properties and crystallization kinetics of Zn0.5Ni0.5Fe2O4, Rare Met., 2011, vol. 30, no. 6, pp. 621–626.

    Article  CAS  Google Scholar 

  6. Satyanarayana, L., Madhusudan Reddy, K., and Manorama, S.V., Nano-sized spinel NiFe2O4: A novel material for the detection of liquefied petroleum gas in air, Mater. Chem. Phys., 2003, vol. 82, pp. 21–26.

    Article  CAS  Google Scholar 

  7. Zhang, K., Holloway, T., and Pradhan, A.K., Magnetic behavior of nanocrystalline CoFe2O4, J. Magn. Magn. Mater., 2011, vol. 323, pp. 1616–1622.

    Article  CAS  Google Scholar 

  8. Wu, W.W., Cai, J.C., Wu, X.H., et al., Co0.35Mn0.65 · Fe2O4 magnetic particles: Preparation and kinetics research of thermal process of the precursor, Powder Technol., 2012, vols. 212–216, pp. 200–205.

    Google Scholar 

  9. Smit, J. and Wijn, H.P.J., Ferrites: Physical Properties of Ferromagnetic Oxides in Relation to Their Technical Applications, Eindhoven: Philips Tech. Library, 1959.

    Google Scholar 

  10. Goya, G.F. and Rechenberg, H.R., Superparamagnetic transition and local disorder in CuFe2O4 nanoparticles, Nanostruct. Mater., 1998, vol. 10, pp. 1001–1011.

    Article  CAS  Google Scholar 

  11. Jiang, J.Z., Goya, G.F., and Rechenberg, H.R., Magnetic properties of nanostructured CuFe2O4, J. Phys: Condens. Matter, 1999, vol. 11, pp. 4063–4078.

    Article  CAS  Google Scholar 

  12. Cross, W.B., Affleck, L., Kuznetsov, M.V., et al., Self propagating high-temperature synthesis of ferrites MFe2O4 (M = Mg, Ba, Co, Ni, Cu, Zn). Reaction in an external magnetic field, J. Mater. Chem., 1999, vol. 9, pp. 2545–2552.

    Article  CAS  Google Scholar 

  13. Selvan, R.K., Augustin, C.O., Berchmans, L.J., and Saraswathi, R., Combustion synthesis of CuFe2O4, Mater. Res. Bull., 2003, vol. 38, pp. 41–54.

    Article  CAS  Google Scholar 

  14. Roy, S. and Ghose, J., Mössbauer study of nanocrystalline cubic NiFe2O4 synthesized by precipitation in polymer matrix, J. Magn. Magn. Mater., 2006, vol. 307, pp. 32–37.

    Article  CAS  Google Scholar 

  15. Gopal Reddy, C.V., Manorama, S.V., and Rao, V.J., Preparation and characterization of ferrites as gas sensor materials, J. Mater. Sci. Lett., 2000, vol. 19, pp. 775–778.

    Article  Google Scholar 

  16. Pandya, P.B., Joshi, H.H., and Kulkarni, R.G., Magnetic and structural properties of CuFe2O4 prepared by the coprecipitation method, J. Mater. Sci. Lett., 1991, vol. 10, pp. 474–476.

    Article  CAS  Google Scholar 

  17. Deng, H., Chen, H., and Li, H., Synthesis of crystal MFe2O4 (M = Mg, Cu, Ni) microspheres, Mater. Chem. Phys., 2007, vol. 101, pp. 509–513.

    Article  CAS  Google Scholar 

  18. Bomio, M., Lavela, P., and Tirado, J.L., Electrochemical evaluation of CuFe2O4 samples obtained by sol-gel methods used as anodes in lithium batteries, J. Solid State Electrochem., 2008, vol. 12, pp. 729–737.

    Article  CAS  Google Scholar 

  19. Vanetsev, A.S., Ivanov, V.K., and Tret’yakov, Yu.D., Microwave synthesis of lithium, copper, cobalt, and nickel ferrites, Dokl. Chem., 2002, vol. 387, nos. 4–6, pp. 332–334.

    Article  CAS  Google Scholar 

  20. Wu, X., Zhou, K., Wu, W., et al., Magnetic properties of nanocrystalline CuFe2O4 and kinetics of thermal decomposition of precursor, J. Therm. Anal. Calorim., 2011, vol. 111, pp. 9–16.

    Article  Google Scholar 

  21. Gen, M.Ya. and Miller, A.V., Levitation synthesis of ultrafine metal powders, Poverkhnost, 1983, no. 2, pp. 150–154.

    Google Scholar 

  22. Petrov, Yu.I. and Shafranovsky, E.A., Exhibition of high- and low-spin states of the high-temperature fcc phase in nanoparticles of Fe, Fe-rich and Co-rich alloys, J. Nanopart. Res., 2001, vol. 3, nos. 5–6, pp. 419–432.

    CAS  Google Scholar 

  23. Ceylan, A., Jastrzembski, K., and Shah, S.I., Enhanced solubility Ag-Cu nanoparticles and their thermal transport properties, Metall. Mater. Trans. A, 2006, vol. 37, pp. 2033–2038.

    Article  Google Scholar 

  24. Kuznetsov, M.V., Morozov, Yu.G., and Belousova, O.V., Levitation jet synthesis of nickel ferrite nanoparticles, Inorg. Mater., 2012, vol. 48, no. 10, pp. 1044–1051.

    Article  CAS  Google Scholar 

  25. Vol, A.E., Stroenie i svoistva dvoinykh metallicheskikh sistem (Structure and Properties of Binary Metallic Systems), Moscow: GIFML, 1962, vol. 2, pp. 749–762.

    Google Scholar 

  26. Nakagawa, Y., Liquid immiscibility in copper-iron and copper-cobalt systems in the supercooled state, Acta Metall., 1958, vol. 6, pp. 704–711.

    Article  CAS  Google Scholar 

  27. Diagrammy sostoyaniya dvoinykh metallicheskikh sistem. Spravochnoe izdanie (Phase Diagrams of Binary Metallic Systems: A Handbook), Moscow: Mashinostroenie, 1997.

  28. Shafranovsky, E.A., Petrov, Yu.I., Kasas, L., and Molins, E., Structure and composition of aerosol particles obtained on evaporation of a homogeneous FeCu (50.4 at %) alloy, Dokl. Phys. Chem., 2009, vol. 429, no. 2, pp. 246–251.

    Article  CAS  Google Scholar 

  29. Crespo, P., Hernando, A., Yavari, R., et al., Magnetic behavior of metastable fcc Fe-Cu after thermal treatments, Phys. Rev. B: Condens. Matter Mater. Phys., 1993, vol. 48, no. 10, pp. 7134–7139.

    Article  CAS  Google Scholar 

  30. Chien, C.L., Liou, S., Kofalt, H.D., et al., Magnetic properties of FexCu100 − x solid solutions, Phys. Rev. B: Condens. Matter Mater. Phys., 1986, vol. 33, no. 5, pp. 3247–3250.

    Article  CAS  Google Scholar 

  31. Morozov, Yu.G., Belousova, O.V., and Kuznetsov, M.V., Preparation of nickel nanoparticles for catalytic applications, Inorg. Mater., 2011, vol. 47, no. 1, pp. 36–40.

    Article  CAS  Google Scholar 

  32. Zhigach, A.N., Kuskov, M.L., Leipunskii, I.O., et al., Preparation of ultrafine powders of metals, alloys, and intermetallic compounds by the Gen-Miller method: History, state of the art, and prospects, Ross. Nanotekhnol., 2012, vol. 7, nos. 3–4, pp. 28–37.

    Google Scholar 

  33. Shafranovsky, E.A. and Petrov, Yu.I., Aerosol Fe nanoparticles with the passivating oxide shell, J. Nanopart. Res., 2004, vol. 6, no. 10, pp. 71–90.

    Article  CAS  Google Scholar 

  34. Verwey, E.J.W. and Heilmann, E.L., Physical properties and cation arrangement of oxides with spinel structures: I. Cation arrangement in spinels, J. Chem. Phys., 1947, vol. 15, no. 4, pp. 174–180.

    Article  CAS  Google Scholar 

  35. Shafranovsky, E.A., Petrov, Y.I., Casas, L., and Molins, E., Structural and Mössbauer studies of aerosol FeCu nanoparticles in a wide composition range, J. Nanopart. Res., 2011, vol. 13, no. 10, pp. 4913–4928.

    Article  CAS  Google Scholar 

  36. Petrov, Yu.I. and Shafranovsky, E.A., Concerning some distinctive features of the preparation of ultrafine particles of inorganic compounds by the gas evaporation method, Izv. Akad. Nauk, Ser. Fiz., 2000, vol. 64, no. 8, pp. 1548–1557.

    CAS  Google Scholar 

  37. Ma, E., Thompson, C.V., Clevenger, L.A., and Tu, K.N., Self-propagating explosive reaction in Al/Ni multilayer thin films, Appl. Phys. Lett., 1990, vol. 57, pp. 1262–1264.

    Article  CAS  Google Scholar 

  38. Uhm, Y.R., Kim, W.W., and Rhee, C.K., Phase control and Mössbauer spectra of nano γ-Fe2O3 particles synthesized by the levitational gas condensation (LGC) method, Phys. Status Solidi A, 2004, vol. 201, no. 8, pp. 1934–1937.

    Article  CAS  Google Scholar 

  39. Mann, A.B., Gavens, A.J., Reiss, M.E., et al., Modeling and characterizing the propagation velocity of exothermic reactions in multilayer foils, J. Appl. Phys., 1997, vol. 82, no. 3, pp. 1178–1188.

    Article  CAS  Google Scholar 

  40. Rogachev, A.S., Exothermic reaction waves in multilayer nanofilms, Usp. Khim., 2008, vol. 77, no. 1, pp. 22–38.

    Article  Google Scholar 

  41. Morozov, Yu.G. and Petinov, V.I., Superconductivity of granulated composites, Fiz. Tverd. Tela (Leningrad), 1978, vol. 20, no. 8, pp. 2482–2484.

    CAS  Google Scholar 

  42. Morozov, Yu.G., Belousova, O.V., Kuznetsov, M.V., et al., Electric field-assisted levitation-jet aerosol synthesis of Ni/NiO nanoparticles, J. Mater. Chem., 2012, vol. 22, pp. 11 214–11 223.

    Article  CAS  Google Scholar 

  43. Merzhanov, A.G., Protsessy goreniya i sintez materialov (Combustion Processes and Materials Synthesis), Telep, V.T. and Khachoyan, A.V., Eds., Chernogolovka: ISMAN, 1998.

  44. Petrov, A.E., Kostygov, A.N., and Petinov, V.I., Magnetic properties of small spherical iron particles in the range 4.2–300 K, Fiz. Tverd. Tela (Leningrad), 1973, vol. 15, no. 10, pp. 2927–2930.

    CAS  Google Scholar 

  45. Tablitsy fizicheskikh velichin. Spravochnik (Tables of Physical Quantities: A Handbook), I.K. Kikoin, Ed., Moscow: Atomizdat, 1976.

    Google Scholar 

  46. Ferromagnetic Materials, Wohlfarth, Ed., Amsterdam: North-Holland, 1980, vol. 2.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Kuznetsov.

Additional information

Original Russian Text © M.V. Kuznetsov, Yu.G. Morozov, O.V. Belousova, 2013, published in Neorganicheskie Materialy, 2013, Vol. 49, No. 6, pp. 647–657.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuznetsov, M.V., Morozov, Y.G. & Belousova, O.V. Synthesis of copper ferrite nanoparticles. Inorg Mater 49, 606–615 (2013). https://doi.org/10.1134/S0020168513050063

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168513050063

Keywords

Navigation