Skip to main content
Log in

Preparation of hafnium diboride nanopowders in an anhydrous Na2B4O7 ionic melt

  • Published:
Inorganic Materials Aims and scope

Abstract

Reactions between hafnium powder and microcrystalline boron in a Na2B4O7 ionic melt have been studied at temperatures from 600 to 850°C. The results demonstrate that nanoparticulate hafnium diboride forms starting at 750°C. According to electron microscopy data, the HfB2 powder obtained at 850°C consists of nearly spherical particles 50–55 nm in diameter, which agrees with the equivalent particle diameter (≃ 60 nm) evaluated from the specific surface area of the HfB2 and with the crystallite size (≃55 nm) determined from X-ray diffraction data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carenco, S., Portehault, D., Boissiere, C., Mezailles, N., and Sanchez, C., Nanoscaled metal borides and phosphides: recent developments and perspectives, Chem. Rev., 2013, vol. 113, no. 10, pp. 7981–8065.

    Article  CAS  Google Scholar 

  2. Venugopal S., Paul A., Vaidhyanathan B., Binner J.G.P., Heaton A., and Brown, P.M., Synthesis and spark plasma sintering of sub-micron HfB2: effect of various carbon sources, Eur. Ceram. Soc., 2014, vol. 34, no. 6, pp. 1471–1479.

    Article  CAS  Google Scholar 

  3. Wang, H., Lee, S.-H., and Kim, H.-D., Nanohafnium diboride powders synthesized using a spark plasma sintering apparatus, J. Am. Ceram. Soc., 2012, vol. 95, pp. 1493–1496.

    Article  CAS  Google Scholar 

  4. Chen, L., Gu, Y., Shi, L., et al., Synthesis and oxidation of nanocrystalline HfB2, J. Alloys Compd., 2004, vol. 368, nos. 1–2, pp. 353–356.

    Article  CAS  Google Scholar 

  5. Portehault, D., Devi, S., Beaunier, P., Gervais, C., Giordano, C., Sanchez, C., and Antonietti, M., A general solution route toward metal boride nanocrystals, Angew. Chem., 2011, vol. 123, no. 14, pp. 3320–3323.

    Article  Google Scholar 

  6. Jensen, J.A., Gozum, J.E., Pollina, D.M., and Girolami, G.S., Titanium, zirconium and hafnium tetrahydroborates as “tailored” CVD precursors for metal diboride thin films, J. Am. Chem. Soc., 1988, vol. 110, no. 5, pp. 1643–1644.

    Article  CAS  Google Scholar 

  7. Wayda, A.L., Schneemeyer, L.F., and Opila, R.L., A low-temperature film deposition of zirconium and hafnium borides for the borohydrides, M(BH4)4, Appl. Phys. Lett., 1988, vol. 53, no. 5, pp. 361–363.

    Article  CAS  Google Scholar 

  8. Andrievski, R.A., Kravchenko, S.E., and Shilkin, S.P., Some properties of ultrafine zirconium boride powders and films, Jpn. J. Appl. Phys. Ser., 1994, vol. 10, pp. 198–199.

    CAS  Google Scholar 

  9. Andrievskii, R.A., Kravchenko, S.E., and Shilkin, S.P., Preparation and some properties of ultrafine zirconium boride and titanium boride powders, Inorg. Mater., 1995, vol. 31, no. 8, pp. 965–968.

    CAS  Google Scholar 

  10. Volkova, L.S., Shul’ga, Yu.M., and Shilkin, S.P., Synthesis of nano-sized titanium diboride in a melt of anhydrous sodium tetraborate, Russ. J. Gen. Chem., 2012, vol. 82, no. 5, pp. 819–821.

    Article  CAS  Google Scholar 

  11. Volkova, L.S., Kravchenko, S.E., Korobov, I.I., Kolesnikova, A.M., Dremova, N.N., Burlakova, A.G., Kalinnikov, G.V., and Shilkin, S.P., Preparation of titanium diboride nanopowders of different particle sizes, Inorg. Mater., 2013, vol. 49, no. 11, pp. 1086–1090.

    Article  CAS  Google Scholar 

  12. Volkova, L.S., Burlakova, A.G., Kravchenko, S.E., and Shilkin, S.P., Preparation of zirconium diboride nanopowders in a sodium tetraborate ionic melt, Inorg. Mater., 2013, vol. 49, no. 12, pp. 1285–1288.

    Article  Google Scholar 

  13. Andrievskii, R.A., Osnovy nanostrukturnogo materialovedeniya. Vozmozhnosti i problemy (Principles of Nanostructured Materials Research: Potentialities and Critical Issues), Moscow: BINOM. Laboratoriya Znanii, 2012.

    Google Scholar 

  14. Fahrenholtz, W.G., Hilman, G.E., Talmy, I.G., and Zaykoski, J.A., Refractory diborides of zirconium and hafnium, J. Am. Ceram. Soc., 2007, vol. 90, no. 5, pp. 1347–1364.

    Article  CAS  Google Scholar 

  15. Simonenko, E.P., Sevast’yanov, D.V., Simonenko, N.P., Sevast’yanov, V.G., and Kuznetsov, N.T., Promising ultra-high-temperature ceramic materials for aerospace applications, Russ. J. Inorg. Chem., 2013, vol. 58, no. 14, pp. 1669–1693.

    Article  CAS  Google Scholar 

  16. Fokin, V.N., Shilkin, S.P., Fokina, E.E., and Mozgina, N.G., Synthesis of superfine titanium nitride by the reaction of titanium or its dihydride with ammonia, Russ. J. Gen. Chem., 1997, vol. 67, no. 5, pp. 659–663.

    CAS  Google Scholar 

  17. Semenenko, K.N., Shilkin, S.P., Burnasheva, V.V., Volkova, L.S., and Mozgina, N.G., Reactions of some intermetallic compounds between rare-earth and irongroup metals with nitrogen in the presence of hydrogen, Zh. Obshch. Khim., 1987, vol. 57, no. 4, pp. 729–732.

    CAS  Google Scholar 

  18. Fokin, V.N., Fokina, E.E., and Shilkin, S.P., Synthesis of coarsely crystalline metal hydrides, Russ. J. Gen. Chem., 1996, vol. 66, no. 8, pp. 1210–1212.

    Google Scholar 

  19. Eksperimental’nye metody v adsorbtsii i molekulyarnoi khromatografii (Experimental Techniques in Adsorption and Molecular Chromatography), Kiselev, A.V. and Dreving, V.P., Eds., Moscow: Mosk. Gos. Univ., 1973.

    Google Scholar 

  20. Aleshin, V.G., Kharlamov, A.N., and Chudinov, M.G., Surface condition of refractory compounds studied by X-ray photoelectron spectroscopy, Izv. Akad. Nauk SSSR, Neorg. Mater., 1979, vol. 15, no. 4, pp. 672–676.

    CAS  Google Scholar 

  21. Belyansky, M. and Trenary, M., Comparison of the surface chemical reactivity of hafnium diboride and hafnium, Inorg. Chim. Acta., 1999, vol. 289, pp. 191–197.

    Article  CAS  Google Scholar 

  22. Lee, W.E., Olive, G., Sequeda, F., Deline, V., Huang, T., Gorman, G., and Chung, D.W., Characterization of HfBx films deposited by r.f. diode and r.d. magnetron sputtering, Thin Solid Films, 1988, vol. 166, nos. 1–2, pp. 131–138.

    Article  CAS  Google Scholar 

  23. Cho Deok-Yong, Oh, S.-J., Chang, Y.J., Noh, T.W., Jung, R., and Lee Jae-Cheol, Role of oxygen vacancy in HfO2/SiO2/Si(100) interfaces, Appl. Phys. Lett., 2006, vol. 88, no. 19, paper 193 502.

    Google Scholar 

  24. Ranjit, R., Zagozdzon-Wosik, W., Rusakova, I., Heide, P., Zhang, Z.H., Bennett, J., and Marton, D., Formation of contacts and integration with shallow junctions using diborides of Ti, Zr and Hf, Rev. Adv. Mater. Sci., 2004, vol. 8, no. 2, pp. 176–184.

    CAS  Google Scholar 

  25. Handbook of X-Ray Photoelectron Spectroscopy, Wagner, C.D. et al., Eds., Eden Prairie: PerkinElmer, 1979.

    Google Scholar 

  26. Diagrammy sostoyaniya dvoinykh metallicheskikh sistem. Spravochnik (Phase Diagrams of Binary Metallic Systems: A Handbook), Lyakishev, N.P., Ed., Moscow: Mashinostroenie, 1996, vol. 1.

    Google Scholar 

  27. Ilyushchenko, N.G., Anfinogenov, A.I., and Shurov, N.I., Vzaimodeistvie metallov v ionnykh rasplavakh (Interactions between Metals in Ionic Melts), Moscow: Nauka, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Kalinnikov.

Additional information

Original Russian Text © S.E. Kravchenko, A.G. Burlakova, I.I. Korobov, Yu.M. Shul’ga, N.N. Dremova, L.S. Volkova, G.V. Kalinnikov, S.P. Shilkin, R.A. Andrievskii, 2015, published in Neorganicheskie Materialy, 2015, Vol. 51, No. 4, pp. 433–436.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kravchenko, S.E., Burlakova, A.G., Korobov, I.I. et al. Preparation of hafnium diboride nanopowders in an anhydrous Na2B4O7 ionic melt. Inorg Mater 51, 380–383 (2015). https://doi.org/10.1134/S0020168515030085

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168515030085

Keywords

Navigation