Skip to main content
Log in

Recrystallization behavior of submicrocrystalline titanium

  • Published:
Inorganic Materials Aims and scope

Abstract

The recrystallization kinetics in submicrocrystalline titanium (Grade 4) have been studied in a wide temperature range by transmission and scanning electron microscopy. We have assessed kinetic laws, evaluated the activation energy for the recrystallization process, and examined the mechanism of the process in different temperature ranges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kolobov, Yu.R., Nanotechnologies for the formation of medical implants based on titanium alloys with bioactive coatings, Nanotechnol. Ross., 2009, vol. 4, nos. 11–12, pp. 758–775.

    Article  Google Scholar 

  2. Ivanov, M.B., Kolobov, Yu.R., Golosov, E.V., Kuz’menko, I.N., Veinov, V.P., Nechaenko, D.A., and Kungurtsev, E.S., Mechanical properties of mass-produced nanostructured titanium, Nanotechnol. Ross., 2011, vol. 6, nos. 5–6, pp. 370–378.

    Article  Google Scholar 

  3. Kolobov, Yu.R., Valiev, R.Z., Grabovetskaya, G.P., et al., Zernogranichnaya diffuziya i svoistva nanostrukturnykh materialov (Grain-Boundary Diffusion and Properties of Nanostructured Materials), Novosibirsk: Nauka, 2001, p. 232.

    Google Scholar 

  4. Betekhtin, V.I., Kolobov, Yu.R., Narykova, M.V., Kardashev, B.K., Golosov, E.V., and Kadomtsev, A.G., Mechanical properties, density, and defect structure of VT1-0 titanium after intense plastic deformation due to screw and longitudinal rollings, Tech. Phys., 2011, vol. 81, no. 11, pp. 1599–1604.

    Article  Google Scholar 

  5. Kolobov, Yu.R., Betekhtin, V.I., Golosov, E.V., Kadomtsev, A.G., Kuz’menko, I.N., Kardashev, B.K., and Narykova, M.V., Effect of plastic deformation produced by screw/longitudinal combination rolling on the defect structure and mechanical properties of VT1-0 titanium, Vestn. Tambovsk. Univ., Ser. Estestv. Tekh. Nauki, 2013, vol. 18, nos. 2–4, pp. 1531–1532.

    Google Scholar 

  6. Bushnev, L.S., Chernova, L.V., and Girsova, N.V., Gorsky effect and diffusion of carbon in VT1-0 titanium, Phys. Met. Metallogr., 2001, vol. 92, no. 3, pp. 251–257.

    Google Scholar 

  7. Sharkeev, Yu.P., Bratchikov, A.D., Kolobov, Yu.R., Eroshenko, A.Yu., and Legostaeva, E.V., Nanostructured titanium for biomedical applications, Fiz. Mezomekh., 2004, vol. 7, no. 2, pp. 107–110.

    Google Scholar 

  8. Valiev R.Z., Semenova, I.P., Latysh, V.V., Shcherbakov, A.V., and Yakushina, E.B., Nanostructured titanium for biomedical applications: new developments and challenges for commercialization, Nanotechnol. Ross., 2008, vol. 3, nos. 9–10, pp. 593–601.

    Article  Google Scholar 

  9. Yakushina, E.B., Semenova, I.P., and Valiev, R.Z., Nanostructured titanium for biomedical applications, Tsvetn. Met., 2010, no. 7, pp. 81–83.

    Google Scholar 

  10. Ivanov, M.B., Manokhin, S.S., Nechaenko, D.A., and Kolobov, Yu.R., Crystal structure of disperse carbides in alpha-titanium, Izv. Vyssh. Uchebn. Zaved., Fiz., 2011, no. 7, pp. 19–25.

    Google Scholar 

  11. Hoseini, M., Pourian, M.H., Bridier, F., Vali, H., Szpunar, J.A., and Bocher, P., Thermal stability and annealing behaviour of ultrafine grained commercially pure titanium, Mater. Sci. Eng., 2012, vol. 532, pp. 58–63.

    Article  CAS  Google Scholar 

  12. Malysheva, S.P., Salishchev, G.A., Mironov, S.Y., and Betsofen, S.Y., Grain growth and texture evolution upon annealing of a submicrocrystalline titanium obtained by severe plastic deformation, Mater. Sci. Forum, 2004, vols. 467–470, pp. 1289–1295.

    Article  Google Scholar 

  13. Kolobov, Yu.R., Lipnitskii, A.G., Ivanov, M.B., Nelasov, I.V., and Manokhin, S.S., Thermal stability of titanium microstructure produced by severe plastic deformation, Izv. Vyssh. Uchebn. Zaved., Fiz., 2011, vol. 54, no. 8, pp. 77–95.

    Google Scholar 

  14. Manokhin S.S., General aspects of structural and phase transformations in undoped VT1-0 titanium, Extended Abstract of Cand. Sci. (Eng.) Dissertation, Belgorod, 2012.

    Google Scholar 

  15. Kolobov, Yu.R., Ivanov, M.B., Golosov, E.V., and Penkin, A.V., RF Patent 2389568, 2008.

    Google Scholar 

  16. Ivanov, M.B., Penkin, A.V., Kolobov, Yu.R., Golosov, E.V., Nechaenko, D.A., and Bozhko, S.A., Warm transverse screw rolling in conical rollers as a method for severe plastic deformation, Deform. Razrushenie Mater., 2010, no. 9, pp. 13–18.

    Google Scholar 

  17. Gutierrez-Urrutia, I., Munoz-Morris, M.A., and Morris, D.G., The effect of coarse second-phase particles and fine precipitates on microstructure refinement and mechanical properties of severely deformed Al alloy, Mater. Sci. Eng., A, 2005, vol. 394, pp. 399–410.

    Article  Google Scholar 

  18. Sun, Y.Q., Surface relief and the displacive transformation to the lamellar microstructure in TiAl, Philos. Mag. Lett., 1998, vol. 78, no. 4, pp. 297–305.

    Article  CAS  Google Scholar 

  19. Kwarciak, J., Kinetics and mechanism of precipitation processes in Al–Ag alloys, J. Therm. Anal., 1985, vol. 30, pp. 177–185.

    Article  CAS  Google Scholar 

  20. Guclu, F.M., Cimenoglu, H., and Kayal, E.S., The recrystallization behaviour of CP-titanium, Mater. Sci. Eng., C, 2006, vol. 26, pp. 1367–1372.

    Google Scholar 

  21. Zwicker, U., Titan und Titanlegierungen, Berlin: Springer, 1974.

    Book  Google Scholar 

  22. Kawanishi, S., Isonishi, K., and Okazaki, K., Grain growth kinetics in Ti–C alloys, Trans. Jpn. Inst. Met., 1973, vol. 14, no. 3, pp. 208–2012.

    Article  Google Scholar 

  23. Herzig, Chr., Wilger, T., Przeorski, T., Hisker, F., and Divinski, S., Titanium tracer diffusion in grain boundaries of a-Ti, a2-Ti3Al, and g-TiAl and in a2/g interphase boundaries, Intermetallics, 2001, vol. 19, pp. 431–442.

    Article  Google Scholar 

  24. Dyment, F. and Labinati, C.M., Self-diffusion of Ti, Zr, and Hf in their hcp phases, and diffusion of Nb in hcp Zr, J. Mater. Sci., 1968, vol. 3, pp. 349–359.

    Article  CAS  Google Scholar 

  25. Dudarev, E.F., Pochivalova, G.P., Kolobov, Yu.R., et al., Diffusion-controlled true grain-boundary sliding in nanostructured metals and alloys, Russ. Phys. J., 2004, vol. 503, pp. 58–61.

    Google Scholar 

  26. Cahoon, J.R. and Sherby, O.D., The activation energy for lattice self-diffusion and the Engel–Brewer theory, Metall. Mater. Trans. A, 1992, vol. 23, no. 19, pp. 2491–2500.

    Article  Google Scholar 

  27. Frost, H.J. and Ashby, M.F., Deformation-Mechanisms Maps, New York: Pergamon, 1982.

    Google Scholar 

  28. Brandesa, E.A. and Brook, G.B., Smithels Metals Reference Book, Oxford: Butterworth-Hernemann, 1992, pp. 13–118.

    Google Scholar 

  29. Wagner, F.C,, Bucur, E.J., and Steinberg, M.A., The rate of diffusion of carbon in alpha and beta titanium, Metall. Trans. ASM, 1956, vol. 48, pp. 742–761.

    Google Scholar 

  30. Grabovetskaya, G.P., Kolobov, Yu.R., Chernova, L.V., and Girsova, N.V., Structure and deformation behavior of submicrocrystalline titanium during creep, Fiz. Mezomekh., 2002, vol. 5, no. 16, pp. 87–94.

    CAS  Google Scholar 

  31. Lipnitskii, A.G., Nelasov, I.V., and Kolobov, Yu.R., Self-diffusion parameters of grain boundaries and triple junctions in nanocrystalline materials, Defect Diffusion Forum, 2011, vols. 309–310, pp. 45–51.

    Article  Google Scholar 

  32. Malakondaiah, P. and Rama Rao, Creep of alpha-titanium at low stresses, Acta Metall., 1981, vol. 29, no. 7, pp. 1263–1275.

    Article  CAS  Google Scholar 

  33. Okazaki, K., Odawara, T., and Conrad, H., Deformation mechanism map for titanium, Scr. Metall., 1977, vol. 11, pp. 437–440.

    Article  CAS  Google Scholar 

  34. Semenova, G., Salimgareeva, G., Da Costa, Lefebvre, W., and Valiev, R., Enhanced strength and ductility of ultrafine-grained Ti processed by severe plastic deformation, Adv. Eng. Mater., 2010, no. 8, pp. 803–807.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. R. Kolobov.

Additional information

Original Russian Text © Yu.R. Kolobov, M.B. Ivanov, S.S. Manokhin, E. Erubaev, 2016, published in Neorganicheskie Materialy, 2016, Vol. 52, No. 2, pp. 159–165.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolobov, Y.R., Ivanov, M.B., Manokhin, S.S. et al. Recrystallization behavior of submicrocrystalline titanium. Inorg Mater 52, 128–133 (2016). https://doi.org/10.1134/S0020168516020072

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168516020072

Keywords

Navigation