Skip to main content
Log in

Determination of forms of element occurrence in samples of vanadium slag and slime

  • Analysis of Substances
  • Published:
Inorganic Materials Aims and scope

Abstract

Complex research of technogenic raw material samples is carried out. Using the methods of X-ray diffraction and X-ray fluorescence analysis, the chemical and phase compositions of roasted vanadium slag and slime are established. The compounds of the base elements are extracted sequentially according to a three-stage scheme recommended by the European Commission. Their low mobility is recorded. Vanadium and manganese compounds possess higher mobility in the slag than in the slime. Iron and chromium form solid oxides and silicates that are disintegrated only under the action of HNO3. The methods of microwave plasma atomic emission spectrometry (MP-AES) and inductively coupled plasma mass spectrometry (ICP-MS) are used to determine the gross contents of V, Mn, Fe, Cr, Zn, Ni, Ba, Sr, Rb, Y, Ga, Ge, Mo, La, and Ce in the samples of slag and slime. It is shown that the total concentration of V, Mn, and Cr considerably exceeds the values of the maximum allowable concentrations (MAC) of these elements established for soils, objects with a sample base that is no less complex. Possible leaching of the forms of elements from solid samples of vanadium slime and slag with 0.1 M Na2CO3 solution and the mobile phase for reversed-phase high performance liquid chromatography (RP HPLC) is studied. Mostly, vanadium compounds are extracted under these conditions. Manganese compounds are extracted by 1–10%. An inconsistency is found between the time of retention during the chromatographic separation of V and Fe forms in the model mixtures and solutions obtained after the samples of vanadium slag and slime have been chemically treated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lyshchik, P.A. and Naumenko, A.I., Solidification of road pavements with slime additives, Tr. Belorus. Gos. Tekhnol. Univ., 2012, vol. 2, pp. 70–72.

    Google Scholar 

  2. Gubanova, L.N., Pushkarskaya, O.Yu., Alimova, L.A., and Akchurin, T.K., Ferroindustry waste, additives of highly filled concretes, Mater. VI mezhd. nauchno-tekh. konf. “Nadezhnost’ i dolgovechnost’ stroitel’nykh materialov, konstruktsii i osnovanii fundamentov” (Proc. VI Int. Sci.-Tech. Conf. “Reliability and Durability of Building Materials, Constructions and Building Foundation Bases”), Volgograd, 2011, pp. 137–141.

    Google Scholar 

  3. Datsenko, V.V., Graivoronskaya, I.V., Khobotova, E.B., and Baumer, V.N., Study of chemical and mineralogical compositions of ferroalloy slags, Nauk. Pratsi Donetsk. Nats. Tekh. Univ., Khim. Khim. Tekhnol., 2010, vol. 14, pp. 132–142.

    Google Scholar 

  4. Rytvin, V.M., Gil’varg, S.I., Ignatenko, V.G., Fedorov, Yu.O., Shemyakin, V.S., and Skopov, S.V., X-ray radiometric separation of mineral and metal phases of slags from the dump of Klyuchevskaya Beneficiation Plant, Mater. III mezhd. nauchno-tekh. konf. “Rentgenoradiometricheskaya separatsiya mineral’nogo syr’ya i tekhnogennykh otkhodov” (Proc. III Int. Sci.- Tech. Conf. “X-Ray Separation of Mineral Raw Materials and Technogenic Waste”), Yekaterinburg, 2007, pp. 30–37.

    Google Scholar 

  5. Ryan, P.C., Hillier, S., and Wall, A.J., Stepwise effects of the BCR sequential chemical extraction procedure on dissolution and metal release from common ferromagnesian clay minerals: a combined solution chemistry and x-ray powder diffraction study, Sci. Total Environ., 2008, vol. 407, pp. 603–614.

    Article  CAS  Google Scholar 

  6. Neaman, A., Martinez, C.E., Trolard, F., and Bourrie, G., Trace element associations with Fe- and Mn-oxides in soil nodules: Comparison of selective dissolution with electron probe microanalysis, Appl. Geochem., 2008, vol. 23, pp. 778–782.

    Article  CAS  Google Scholar 

  7. Favas, P.J.C., Pratas, J., Gomes, M.E.P., and Cala, V., Selective chemical extraction of heavy metals in tailings and soils contaminated by mining activity: environmental implications, J. Geochem. Expl., 2011, vol. 111, pp. 160–171.

    Article  CAS  Google Scholar 

  8. De Waal, W.A.J., Kuiper, C.C.H.M., Maessen, F.J.M.J., Kraak, J.C., Wijnands, R., and Jonker, R.J., Selection of conditions for the molecular size speciation of vanadium and nickel complexes in oil by size-exclusion chromatography coupled with inductively coupled plasma-atomic emission spectrometry, J. Chromatogr. A, 1989, vol. 462, pp. 115–135.

    Article  Google Scholar 

  9. Ming, X.Y., Wu, Y.H., and Schwedt, G., HPLC analysis of V, Co, Fe and Ni by 4-(2-pyridylazo)-resorcinol and H2O2 and studies on complex properties influencing retention, Fresenius’ J. Anal. Chem. 1992, vol. 342, pp. 556–559.

    Article  CAS  Google Scholar 

  10. Jen, H.-F. and Yang, S.-M., Simultaneous speciation determination of vanadium (IV) and vanadium (V) as EDTA complexes by liquid chromatography with UV detection, Anal. Chim. Acta, 1994, vol. 289, pp. 97–104.

    Article  CAS  Google Scholar 

  11. Jane, TsaiS., S.-J., Hsu S.-J. Speciation of vanadium (V) and vanadium (IV) with 4-(2-pyridylazo)-resorcinol by using high performance liquid chromatography with spectrophotometric detection, Analyst, 1994, vol. 119, pp. 403–407.

    Article  Google Scholar 

  12. Wann, C.-C. and Jiang, S.-J., Determination of vanadium species in water samples by liquid chromatography- inductively coupled plasma spectrometry, Anal. Chim. Acta, 1997, vol. 357, pp. 211–218.

    Article  CAS  Google Scholar 

  13. Poledniok, J. and Buhl, F., Speciation of vanadium in soil, Talanta, 2003, vol. 59, pp. 1–8.

    Article  CAS  Google Scholar 

  14. Colina, M., Gardiner, P.H.E., Rivas, Z., and Troncone, F., Determination of vanadium species in sediment, mussel and fish muscle tissue samples by liquid chromatography-inductively coupled plasma-mass spectrometry, Anal. Chim. Acta, 2005, vol. 538, pp. 107–115.

    Article  CAS  Google Scholar 

  15. Genc, F., Gavazov, K.B., and Turkyilmaz, M., Ternary complexes of vanadium (IV) with 4-(2-pyridylazo)- resorcinol and ditetrazolium chlorides, Centr. Eur. J. Chem., 2010, vol. 8, pp. 461–467.

    CAS  Google Scholar 

  16. Komarova, T.V., Obrezkov, O.N., and Shpigun, O.A., Ion-chromoatographic determination of vanadium (IV) and (V) in the form of EDTA complexes, Zh. Anal. Khim., 1991, vol. 46, pp. 1991–1996.

    CAS  Google Scholar 

  17. Tengku, Azmi T.S.M., Mohd. Yusoff A. R., Abdul Karim K. J., Determination of vanadium (IV) and vanadium (V) in Benfield samples by IEC with conductivity detection, Chromatographia, 2010, vol. 72, pp. 141–144.

    Article  Google Scholar 

  18. Yeh, C.-F. and Jiang, S.-J., Speciation of V, Cr and Fe by capillary electrophoresis-bandpass reaction cell inductively coupled plasma mass spectrometry, J. Chromatogr. A, 2004, vol. 1029, pp. 255–261.

    Article  CAS  Google Scholar 

  19. Soldi, T., Pesavento, M., and Alberti, G., Separation of vanadium (V) and (IV) by sorption on an iminodiacetic chelating resin, Anal. Chim. Acta, 1996, vol. 323, pp. 27–37.

    Article  CAS  Google Scholar 

  20. Fan, Z., Hu, B., and Jiang, Z., Speciation analysis of vanadium in natural water samples by electrothermal vaporization inductively coupled plasma optical emission spectroscopy after separation/preconcentration with theonoyltrifluoroacetone immobilized on microcrystalline naphthalene, Spectrochim. Acta, 2005, vol. 60, pp. 65–71.

    Article  Google Scholar 

  21. Pyrzynska, K. and Wierzbicki, T., Pre-concentration and separation of vanadium on Amberlite IRA-904 resin functionalized with porphyrin ligands, Anal. Chim. Acta, 2005, vol. 540, pp. 91–94.

    Article  CAS  Google Scholar 

  22. Veschetti, E., Maresca, D., Lucentini, L., Ferretti, E., Citti, G., and Ottaviani, M., Monitoring of V(IV) and V(V) in Etnean drinking-water distribution systems by solid phase extraction and electrothermal atomic absorption spectrometry, Microchem. J, 2007, vol. 85, pp. 80–87.

    Article  CAS  Google Scholar 

  23. Pacheco, P.H., Olsina, R.A., Smichowski, P., and Martinez, L.D., On-line preconcentration and speciation analysis of inorganic vanadium in urine using Lmethionine immobilized on controlled pore glass, Talanta, 2008, vol. 74, pp. 593–598.

    Article  CAS  Google Scholar 

  24. Mandiwana, K.L. and Panichev, N., Electrothermal atomic absorption spectrometric determination of vanadium (V) in soil after leaching Na2CO3, Anal. Chim. Acta, 2004, vol. 517, pp. 201—206.

    Article  CAS  Google Scholar 

  25. Oguma, K., Yoshioka, O., Noro, J., and Sakurai, H., Simultaneous determination of vanadium (IV) and vanadium (V) by flow injection analysis using kinetic spectrophotometry with xylenol orange, Talanta, 2012, vol. 96, pp. 44–49.

    Article  CAS  Google Scholar 

  26. Chaurand, P., Rose, J., Domas, J., and Bottero, J.-Y., Speciation of Cr and V within BOF steel slag reused in road constructions, J. Geochem. Expl. 2006, vol. 88, pp. 10–14.

    Article  CAS  Google Scholar 

  27. Umanskii, Ya.S., Sanchuk, Ya.E., and Polyakov, A.Yu., X-ray study of vanadium slags, Stal’, 1951, vol. 2, pp. 99–103.

    Google Scholar 

  28. Rudneva, A.V., Mineralogical composition of charge slags with high P content, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 1959, vol. 2, pp. 7–12.

    CAS  Google Scholar 

  29. Slotvinskii-Sidak, N.P. and Kolpakova, V.I., Structure of vanadium slags and vanadium extraction from them, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 1961, vol. 8, pp. 37–42.

    Google Scholar 

  30. Fomenko, A.I., Ash-and slime collectors of ironworks: technological and geological aspects, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 2005, vol. 7, pp. 61–64.

    Google Scholar 

  31. D’yachkova, A.V., Malyutina, T.M., Alekseeva, T.Yu., and Karpov, Yu.A., Chemical preparation of samples obtained from used automotive catalysts for determining platinum, palladium, and rhodium by the method of inductively-coupled plasma amomic-emission spectrometry, Zavod. Lab., Diagn. Mater. 2011, vol. 77, pp. 3–9.

    Google Scholar 

  32. Fedyunina, N.N., Kirichenko, A.S., Seregina, I.F., Volkov, A.I., and Seregin, A.N., On certain methods of determining contents of platinum group metals in used automotive catalysts and products of their processing, Probl. Chern. Metall. Materialoved., 2014, no. 1, pp. 73–78.

    Google Scholar 

  33. Ure, A.M., Quevauviller, P., Muntau, H., and Griepink, B., Speciation of heavy metals in soils and sediments. An account of the Improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the commission of the European Communities, Int. J. Environ. Anal. Chem., 1993, vol. 51, pp. 135–151.

    Article  CAS  Google Scholar 

  34. Vatolin, N.A., Moleva, N.G., Volkova, P.I., and Sapozhnikova, T.V., Okislenie vanadievykh shlakov (Oxidation of Vanadium Slags), Moscow: Nauka, 1978.

    Google Scholar 

  35. Alimarin, I.P. and Ushakova, N.N., Spravochnoe posobie po analiticheskoi khimii (Analytical Chemistry Handbook), Moscow: Mosk. Gos. Univ., 1977.

    Google Scholar 

  36. GN (State Standard) 2.1.7.2041-06: Maximum Admissible Concentrations (MAC) of Chemical Substances in Soils, Moscow: Rospotrebnadzor, 2006.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Zhdanov.

Additional information

Original Russian Text © P.A. Zhdanov, I.F. Seregina, M.A. Bol’shov, A.I. Volkov, A.N. Seregin, 2015, published in Zavodskaya Laboratoriya, Diagnostika Materialov, 2015, Vol. 81, No. 9, pp. 19–27.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhdanov, P.A., Seregina, I.F., Bol’shov, M.A. et al. Determination of forms of element occurrence in samples of vanadium slag and slime. Inorg Mater 52, 1431–1439 (2016). https://doi.org/10.1134/S0020168516140144

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168516140144

Keywords

Navigation