Skip to main content
Log in

Preparation of Bioactive Mesoporous Calcium Phosphate Granules

  • Published:
Inorganic Materials Aims and scope

Abstract

Mesoporous calcium phosphate granules ranging in mesopore size from 11 to 19 nm have been prepared using cryogenic processing (–18°C) of gels and extrusion of calcium phosphate paste. The granules based on acid calcium phosphates have a relatively small specific surface area (45 m2/g) in comparison with the neutral and basic calcium phosphates (84–155 m2/g). Preclinical in vivo trials on rats show that the presence of calcium phosphate granules in a bone defect considerably accelerates reparative osteogenesis in comparison with a control group of animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pavlenko, A.V., Tokarskii, V.F., Prots’, G.B., Kliment’ev, V.G., and Shterenberg, A., A novel biphasic bone substitute Easygraft® CRYSTAL material based on ß-tricalcium phosphate for bone defects, Sovrem. Stomatol., 2013, no. 1, pp. 89–92.

    Google Scholar 

  2. Daculsi, G., Uzel, A.P., Weiss, P., Goyenvalle, E., and Aguado, E., Developments in injectable multiphasic biomaterials. The performance of microporous biphasic calcium phosphate granules and hydrogels, J. Mater. Sci.: Mater. Med., 2010, vol. 21, pp. 855–861.

    CAS  Google Scholar 

  3. Le Guehennec, L., Goyenvalle, E., Aguado, E., Pilet, P., Bagot D’Arc, M., Bilban, M., Spaethe, R., and Daculsi, G., MBCP biphasic calcium phosphate granules and tissucol fibrin sealant in rabbit femoral defects: the effect of fibrin on bone ingrowth, J. Mater. Sci.: Mater. Med., 2005, vol. 16, pp. 29–35.

    Google Scholar 

  4. Le Nihouannen, D., Le Guehennec, L., Rouillon, Th., Pilet, P., Bilban, M., Layrollea, P., and Daculsi, G., Micro-architecture of calcium phosphate granules and fibrin glue composites for bone tissue engineering, Biomaterials, 2006, vol. 27, pp. 2716–2722.

    Article  Google Scholar 

  5. Daculsi, G., LeGeros, R.Z., Heughebaert, M., and Barbieux, I., Formation of carbonate-apatite crystals after implantation of calcium phosphate ceramics, Calcif. Tissue. Int., 1990, vol. 46, pp. 20–27.

    Article  CAS  Google Scholar 

  6. Barinov, S.M. and Komlev, V.S., Biokeramika na osnove fosfatov kal’tsiya (Calcium Phosphate-Based Bioceramics), Moscow: Nauka, 2005.

    Google Scholar 

  7. Musskaya, O.N., Kulak, A.I., Lesnikovich, L.A., Butovskaya, G.V., Ulasevich, S.A., Krut’ko, V.K., and Sycheva, O.A., Hydroxyapatite xerogel dehydration kinetics under nonisothermal conditions, Zh. Obshch. Khim., 2012, vol. 82, no. 8, pp. 1258–1262.

    Google Scholar 

  8. Musskaya, O.N., Kulak, A.I., Krut’ko, V.K., Lesnikovich, L.A., and Kovalenko, A.Yu., Bioactive hydroxyap-atite xerogel, Vestsi Nats. Akad. Navuk Belarusi, Ser. Khim. Navuk, 2011, no. 1, pp. 5–11.

    Google Scholar 

  9. Shchegrov, L.N., Fosfaty dvukhvalentnykh metallov (Divalent Metal Phosphates), Kiev: Naukova Dumka, 1987.

    Google Scholar 

  10. Krut’ko, V.K., Kulak, A.I., Lesnikovich, L.A., Trofimova, I.V., Musskaya, O.N., Zhavnerko, G.K., and Paribok, I.V., Influence of the dehydration procedure on the physicochemical properties of nanocrystalline hydroxylapatite xerogel, Russ. J. Gen. Chem., 2007, vol. 77, no. 3, pp. 336–342.

    Article  Google Scholar 

  11. Ulasevich, S.A., Krut’ko, V.K., Musskaya, O.N., Kulak, A.I., Lesnikovich, L.A., and Safronova, T.V., Influence of maturation conditions of hydroxyapatite gel on the composition of xerogel, Russ. J. Appl. Chem., 2013, vol. 86, no. 2, pp. 146–150.

    Article  CAS  Google Scholar 

  12. Ulasevich, S.A., Kulak, A.I., Krut’ko, V.K., Musskaya, O.N., Lesnikovich, L.A., and Safronova, T.V., Hydroxyapatite formation under combined treatment of a gel in the secondary maturation stage, Russ. J. Gen. Chem., 2015, vol. 85, no. 1, pp. 1–6.

    Article  CAS  Google Scholar 

  13. Musskaya, O.N., Kulak, A.I., Krut’ko, V.K., Lesnikovich, L.A., and Ulasevich, S.A., Dehydration of hydroxyapatite and tricalcium phosphate gels to bioactive xerogels, Sviridovskie Chteniya, 2010, no. 6, pp. 41–48.

    Google Scholar 

  14. Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., and Siemieniewska, T., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem., 1985, vol. 57, no. 4, pp. 603–619.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Musskaya.

Additional information

Original Russian Text © O.N. Musskaya, A.I. Kulak, V.K. Krut’ko, Yu.A. Lesnikovich, V.V. Kazbanov, N.S. Zhitkova, 2018, published in Neorganicheskie Materialy, 2018, Vol. 54, No. 2, pp. 130–137.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musskaya, O.N., Kulak, A.I., Krut’ko, V.K. et al. Preparation of Bioactive Mesoporous Calcium Phosphate Granules. Inorg Mater 54, 117–124 (2018). https://doi.org/10.1134/S0020168518020115

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168518020115

Keywords

Navigation