Skip to main content
Log in

Effect of Heat Treatment on the Electrical Properties of Thin Yttrium-Doped In2O3 Films

  • Published:
Inorganic Materials Aims and scope

Abstract

Thin indium oxide films and In–Y–O films containing 0.7 to 3.6 at % Y have been grown by ionbeam sputtering of an indium target and a composite (indium + weighed amounts of yttrium) target in a mixture of argon and oxygen. The thin indium oxide films have a cubic crystal structure (sp. gr. Ia\(\bar 3\)). The incorporation of yttrium atoms into indium oxide leads to the formation of an amorphous structure in the as-grown films and an increase in their room-temperature electrical resistance by several orders of magnitude. Lowtemperature electrical resistance data indicate a change in conduction mechanism. High-temperature heat treatment of the thin In–Y–O films leads to the crystallization of their amorphous structure and an increase in their electrical resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Warschkow, O., Ellis, D.E., and Gonzales, G.B., Defect cluster aggregation and nonreducibility in tindoped indium oxide, J. Am. Ceram. Soc., 2003, vol. 86, no. 10, pp. 1707–1711.

    Article  CAS  Google Scholar 

  2. Walsh, A., Da Silva, J.L.F., and Wei, S.H., Nature of the band gap of In2O3 revealed by first-principles calculations and X-ray spectroscopy, Phys. Rev. Lett., 2008, vol. 100, paper 167 402.

    Google Scholar 

  3. Gurlo, A.Ch., Structure and gas-sensitive properties of indium oxide and the In2O3–MoO3 system prepared by a sol–gel process, Extended Abstract of Cand. Sci. (Chem.) Dissertation, Minsk, 1998.

    Google Scholar 

  4. Tang, Y. and Ma, J., In2O3 nanostructures: synthesis and chlorobenzene sensing properties, RSC Adv., 2014, vol. 4, no. 49, pp. 25 692–25 697.

    Article  CAS  Google Scholar 

  5. Seiler, W., Epitaxial undoped indium oxide thin films: structural and physical properties, Sol. Energy Mater. Sol. Cells, 2013, vol. 116, pp. 34–42.

    Article  CAS  Google Scholar 

  6. Suchea, M., Katsarakis, N., Christoulakis, S., Nikolopoulou, S., and Kiriakidis, G., Low temperature indium oxide gas sensors, Sens. Actuators, B, 2006, vol. 118, pp. 135–141.

    Article  CAS  Google Scholar 

  7. Knunyants, I.L., Khimicheskaya entsiklopediya: v 5 t. (Chemical Encyclopedia in Five Volumes), Moscow: Sovetskaya Entsiklopediya, 1990, vol. 2.

    Google Scholar 

  8. Belousov, V.A., Gusev, A.L., Zolotukhin, I.V., Kalinin, Yu.E., Samokhina, O.I., and Sitnikov, A.V., Effect of hydrogen on the electrical properties of nanocrystalline In–O–Y films, Al’ternativnaya Energ. Ekol., 2006, no. 12, pp. 9–17.

    Google Scholar 

  9. Gridnev S.A., Kalinin Yu.E., Sitnikov A.V., and Stognei O.V. Nelineinye yavleniya v nano-i mikrogeterogennykh sistemakh (Nonlinear Phenomena in Nanoand Microheterogeneous Systems), Moscow: BINOM, Laboratoriya Znanii, 2012.

    Google Scholar 

  10. Seiler, W., Nistor, M., Hebert, C., and Perrière, J., Epitaxial undoped indium oxide thin films: structural and physical properties, Sol. Energy Mater. Sol. Cells, 2013, vol. 116, pp. 34–42.

    Article  CAS  Google Scholar 

  11. Svoistva elementov (Properties of Elements), part 1: Fizicheskie svoistva (Physical Properties), Moscow: Metallurgiya, 1976, p. 228.

  12. Gurevich, L.V., Karachevtsev, G.V., Kondrat’ev, V.N., Lebedev, Yu.A., Medvedev, V.A., Potapov, V.K., and Khodeev, Yu.S., Energii razryva khimicheskikh svyazei. Potentsialy ionizatsii i srodstvo k elektronu (Bond Energies, Ionization Potentials, and Electron Affinity), Moscow: Nauka, 1974.

    Google Scholar 

  13. Babkina, I.V., Zhilova, O.V., Korolev, K.G., Makagonov, V.A., and Khlopovskikh, P.M., Electrical transport properties of wide-band-gap oxides and multilayer films, Vestn. Voronezhsk. Gos. Tekh. Univ., 2015, vol. 11, no. 5, pp. 93–99.

    Google Scholar 

  14. Babkina, I.V., Gabriel’s, K.S., Epryntseva, T.I., Zhilova, O.V., Makagonov, V.A., Sitnikov, A.V., and Hlopovskikh, P.M., Effect of thermal treatment on the electrotransport properties of thin film In2O3, ZnO materials and the multilayer (In2O3/ZnO)83 heterostructure, Bull. Russ. Acad. Sci.: Phys., 2016, vol. 80, no. 9, pp. 1168–1171.

    CAS  Google Scholar 

  15. Polyanskaya, T.A. and Shmartsev, Yu.V., Quantum corrections to the electrical conductivity of semiconductors with two-or three-dimensional gas, Fiz. Tekh. Poluprovodn. (S.-Peterburg), 1989, vol. 23, no. 1, pp. 3–32.

    CAS  Google Scholar 

  16. Mott, N. and Davis, E., Electronic Processes in Non-Crystalline Materials, Oxford: Clarendon, 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. E. Kalinin.

Additional information

Original Russian Text © Yu.E. Kalinin, O.V. Zhilova, I.V. Babkina, A.V. Sitnikov, V.A. Makagonov, O.I. Remizova, 2018, published in Neorganicheskie Materialy, 2018, Vol. 54, No. 9, pp. 936–942.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalinin, Y.E., Zhilova, O.V., Babkina, I.V. et al. Effect of Heat Treatment on the Electrical Properties of Thin Yttrium-Doped In2O3 Films. Inorg Mater 54, 885–891 (2018). https://doi.org/10.1134/S0020168518090030

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168518090030

Keywords

Navigation