Skip to main content
Log in

Simple liquid pumping system using piezoelectric actuated cantilever beam

  • Laboratory Techniques
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

A simple liquid pumping system is designed using a piezoelectric actuated cantilever beam with a glass tube attached to its tip. The flowrate of the pump is proportional to the tip displacement and vibrating frequency of the cantilever beam. The flowrate linearly increases up to 0.53 mL/s for water with actuation voltage (with amplitudes up to 300 V(p-p)) applied to the piezoelectric actuator. The effect of other important parameters such as viscosity of the liquid, level of the liquid in the vessel and tube diameter on the flowrate of the pump is experimentally evaluated. The results demonstrate that the proposed pump is applicable to liquids with viscosity ranging from 0.23 to 170 mPa s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Taylor, M.T., Nguyen, P., and Ching, J., J. Micromech. Microeng., 2003, vol. 13, p. 201–208. DOI: 10.1088/0960-1317/13/2/306

    Article  ADS  Google Scholar 

  2. Singhal, V., Garimella, S.V., and Raman, A., Appl. Mech. Rev., 2004, vol. 57, p. 191–221. DOI: 10.1115/1.1695401

    Article  ADS  Google Scholar 

  3. Teymoori, M.M. and Abbaspour-Sani, E., Sensors Actuator A-Phys., 2005, vol. 117, p. 222–229. DOI: 10.1016/j.sna.2004.06.025

    Article  Google Scholar 

  4. Ham, Y.B., Seo, W.S., Oh, S.J., Park, J.H., and Yun, S.N., J. Korean Phys. Soc., 2010, vol. 57, p. 877–881. DOI: 10.3938/jkps.57.877

    Article  Google Scholar 

  5. Ham, Y.B., Song, J.J., Park, J.H., Yun, S.N., Choi, B.O., and Ahn, K.Y., A study on the small size PZT pump for cooling water circulation, Proc. SICE-ICASE Int. Joint Conf., Busan, Korea, 2006, pp. 4126–4129. DOI: 10.1109/SICE.2006.31515910.1109/SICE.2006.315159

    Google Scholar 

  6. Ma, H.K., Li, Y.T., Su, H.C., Luo, W.F., Pan, T.J., Fang, F.M., and Hsu, S.W., Smart Mater. Res., 2013, vol. 2013, 16 pages. http://dx.doi.org/10.1155/2013/49801910.1155/2013/498019

  7. Ma, H.K., Hou, B.R., Gao, J.J., Lin, C.Y., and Kou, M.C., Development of One-sided Actuating Piezoelectric Micropump Combined with Cold Plate in a Laptop, Proc. Semicond. Thermal Measur. Manag. Symp., San Jose, USA, 2008. pp. 124–131. DOI: 10.1109/STHERM.2008.450937810.1109/STHERM.2008.4509378

    Google Scholar 

  8. Liu, G., Shen, C., Yang, Z., Cai, X., and Zhang, H., Sensors Actuators A: Phys., 2010, vol. 163, p. 291–296. DOI: 10.1016/j.sna.2010.06.030

    Article  Google Scholar 

  9. Kar, S., McWhorter, S., Ford, S.M., and Soper, S.A., Analyst, 1998, vol. 123, p. 1435–1441.

    Article  ADS  Google Scholar 

  10. Cheng, G.M., Li, P., Zeng, P., Dong, J.S., and Sun, F.F., J. Bionic. Eng., 2007, vol. 4, p. 159–164. DOI: 10.1016/S1672-6572-6529(07)60028-6

    Article  Google Scholar 

  11. Cohen, Y.B. and Chang, Z., Piezoelectrically actuated miniature peristaltic pump, Proc. SPIE 3992. Smart Structures and Materials 2000: Active Materials: Behavior and Mechanics, 669, 2000. DOI: 10.1117/12.3881903992

    Google Scholar 

  12. Ma, Y.T., Kong, F.R., Pan, C.L., Zhang, Q., and Feng, Z.H., Miniature tubular centrifugal piezoelectric pump utilizing wobbling motion, Sensors Actuator A: Phys., 2010, vol. 157, p. 322–327. DOI: 10.1016/j.sna.2009.11.035

    Article  Google Scholar 

  13. Lin, X., Hu, X., and Zhang, J., Theoretical and experimental research of caudal-fin-type piezoelectric-stack pump with variable-cross-section oscillating vibrato, Proc. IEEE Int.l Conf. Mechatron. Autom., 2011, pp. 1433–1438. DOI: 10.1109/ICMA.2011.5985878

    Google Scholar 

  14. Junwu, K., Zhigang, Y., Taijiang, P., Guangming, C., and Boda, W., Sensors Actuators A: Phys., 2005, vol. 121, p. 156–161. DOI: 10.1016/j.sna.2004.12.002

    Article  Google Scholar 

  15. De Lima, C.R., Vatanabe, S.L., Choi, A., Nakasone, P.H., Pires, R.F., and Silva, E.C.N., Sensors Actuator A: Phys., 2009, vol. 152, p. 110–118. DOI: 10.1016/j.sna.2009.02.038

    Article  Google Scholar 

  16. Vasuki, B., Sathiya, S., and Suresh, K., A new piezoelectric laminated cantilever resonance based hydraulic pump, Proc. IEEE Sensor and Applications Symp., Galveston, 2013, pp. 197–201. DOI: 10.1109/SAS.2013.649358510.1109/SAS.2013.6493585

    Google Scholar 

  17. Pota, H.R., Moheimani, R.S.O., and Smith, M., Smart Mater. Struct., 2002, vol. 11, p. 1–8. DOI: 10.1088/0964-1726/11/1/301

    Article  ADS  Google Scholar 

  18. Reza Moheimani, S.O., IEEE Trans. Control Syst. Technol., 2000, vol. 8, p. 660–666. DOI: 10.1109/87.852911

    Article  Google Scholar 

  19. Erturk, A. and Inman, D.J., Piezoelectric Energy Harvesting, Chichester: Wiley, 2011.

    Book  Google Scholar 

  20. Loukanov, I.A., Res. Agr. Eng., 2007, vol. 53, p. 172–181.

    Google Scholar 

  21. Pati, S., Text Book of Fluid and Hydraulic Machines, New Delhi: Tata McGraw Hill, 2012.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sathiya.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sathiya, S., Umapathy, M., Vasuki, B. et al. Simple liquid pumping system using piezoelectric actuated cantilever beam. Instrum Exp Tech 59, 142–148 (2016). https://doi.org/10.1134/S0020441216010127

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441216010127

Keywords

Navigation