Skip to main content
Log in

Composition of cementite in the dependence on the temperature. In situ neutron diffraction study and Ab initio calculations

  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The structure state of carbon eutectoid steel has been studied by the in situ neutron diffraction method in the temperature range from room temperature to 800°C. It has been shown that an increase in the temperature is accompanied by a decrease in the concentration of carbon in cementite, whereas its weight fraction and the parameters of the orthorhombic lattice change slightly. The ab initio calculations of the nonstoichiometric carbides Fe3C x (0 < x < 1) indicate that the structure of cementite remains stable upon the appearance of vacancies in the carbon sublattice with a relatively low formation energy. Thus, cementite should be considered as an interstitial phase Fe3C x with a wide homogeneity range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. J. Fasiska and G. A. Jeffrey, Acta Cryst. 19, 463 (1965).

    Article  Google Scholar 

  2. T. B. Massalski, Binary Alloy Phase Diagrams, 2nd ed. (Metals Park, OH, ASM, 1990).

  3. N. J. Petch, J. Iron Steel Inst. 149, 143 (1944).

    Google Scholar 

  4. F. X. Kayser and Y. Sumitomo, J. Phase Equilibria 458, 458 (1997).

    Article  Google Scholar 

  5. L. Battezzati, M. Baricco, and S. Curiotto, Acta Mater. 53, 1849 (2005).

    Article  Google Scholar 

  6. E. P. Yelsukov, A. I. Ulyanov, A. V. Zagainov, and N. B. Arsentyeva, J. Magn. Magn. Mater. 253–259, 513 (2003).

    Article  Google Scholar 

  7. A. N. Maratkanova, Y. V. Ruts, D. V. Surnin, et al., Phys. Met. Metallogr. 89, 604 (2000).

    Google Scholar 

  8. E. P. Yelsukov, V. M. Fomin, D. A. Vytovtov, et al., Phys. Met. Metallogr. 100, 251 (2005).

    Google Scholar 

  9. V. M. Schastlivtsev, I. L. Yakovleva, D. A. Mirzaev, and K. Yu. Okishev, Phys. Met. Metallogr. 96, 313 (2003).

    Google Scholar 

  10. I. N. Shabanova and V. A. Trapeznikov, Pis’ma Zh. Eksp. Teor. Fiz. 18, 339 (1973) [JETP Lett. 18, 339 (1973)].

    Google Scholar 

  11. M. H. Hong, W. T. Reynolds, T. Tarui, and K. Hono, Met. Trans. A 30, 717 (1999).

    Google Scholar 

  12. X. Sauvage and Y. Ivanisenko, J. Mater. Sci. 42, 1615 (2006).

    Article  ADS  Google Scholar 

  13. A. G. Vakhnej, V. N. Antonov, A. N. Yaresko, et al., Metallofizika 18, 21 (1996).

    Google Scholar 

  14. M. Mizuno, I. Tanaka, and H. Adachi, Phil. Mag. B 75, 237 (1997).

    Article  Google Scholar 

  15. M. Methfessel and M. Scheffler, Physica B 172, 175 (1991).

    Article  ADS  Google Scholar 

  16. L. Vocadlo, J. Brodholt, D. P. Dobson, et al., Earth Planet. Sci. Lett. 203, 567 (2002).

    Article  ADS  Google Scholar 

  17. N. I. Medvedeva, L. E. Karkina and A. L. Ivanovskii, Phys. Met. Metallogr. 96, 452 (2003).

    Google Scholar 

  18. A. K. Arzhnikov and L. V. Dobysheva, codmat/0606024.

  19. V. G. Vaks and K. Yu. Khromov, Zh. Eksp. Teor. Fiz. 133, 313 (2008) [JETP 106, 265 (2008)].

    Google Scholar 

  20. G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).

    Article  ADS  Google Scholar 

  21. G. Kresse and J. Hafner, J. Phys. Condens. Matter 6, 8245 (1994).

    Article  ADS  Google Scholar 

  22. G. Kresse and J. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  ADS  Google Scholar 

  23. J. P. Perdew, J. A. Chevary, S. H. Vosko, et al., Phys. Rev. B 46, 6671 (1992); Phys. Rev. B 48, 4978 (1993).

    Article  ADS  Google Scholar 

  24. S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980).

    Article  ADS  Google Scholar 

  25. S. V. Okatov, A. R. Kuznetsov, Yu. N. Gornostyrev, et al., Phys. Rev. B 79, 0941111 (2009).

    Article  Google Scholar 

  26. Chao Jiang, B. P. Uberuaga, and S. G. Srinivasan, Acta Mater. 56, 3236 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Voronin.

Additional information

Original Russian Text © V.I. Voronin, I.F. Berger, Yu.N. Gornostyrev, V.N. Urtsev, A.R. Kuznetsov, A.V. Shmakov, 2010, published in Pis’ma v Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2010, Vol. 91, No. 3, pp. 154–157.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voronin, V.I., Berger, I.F., Gornostyrev, Y.N. et al. Composition of cementite in the dependence on the temperature. In situ neutron diffraction study and Ab initio calculations. Jetp Lett. 91, 143–146 (2010). https://doi.org/10.1134/S0021364010030094

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364010030094

Keywords

Navigation