Skip to main content
Log in

Non-Newtonian dynamics of the fast motion of a magnetic vortex

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The dynamics of a magnetic vortex in a thin magnetically soft ferromagnetic disc with a submicron diameter has been analyzed. Under the action of field pulses with a duration of the order of 10–100 ps, the vortex undergoes a complex motion. The analysis of the results of a micromagnetic simulation indicates that this motion is non-Newtonian. It can be described by an equation containing the third time derivative of the displacement of the vortex core.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Skomski, J. Phys.: Condens. Matter 15, R841 (2003); Advanced Magnetic Nanostructures, Ed. by D. J. Sellmyer and R. Skomski (Springer, Berlin, 2006).

    Article  ADS  Google Scholar 

  2. A. Wachowiak, J. Wiebe, M. Bode, et al., Science 298, 577 (2002).

    Article  ADS  Google Scholar 

  3. R. Hertel, S. Gliga, M. Fähnle, et al., Phys. Rev. Lett. 98, 117201 (2007).

    Article  ADS  Google Scholar 

  4. V. S. Pribiag, I. N. Krivorotov, G. D. Fuchs, et al., Nature Phys. 3, 498 (2007).

    Article  ADS  Google Scholar 

  5. B. A. Ivanov and C. E. Zaspel, Phys. Rev. Lett. 99, 247208 (2007).

    Article  ADS  Google Scholar 

  6. K. Yamada, S. Kasai, Y. Nakatani, et al., Nature Mater. 6, 269 (2007).

    Article  ADS  Google Scholar 

  7. A. V. Khvalkovskiy, J. Grollier, A. Dussaux, et al., Phys. Rev. B 80, 140401(R) (2009).

    Article  ADS  Google Scholar 

  8. A. V. Khvalkovskiy, A. N. Slavin, J. Grollier, et al., Appl. Phys. Lett. 96, 022504 (2010).

    Article  ADS  Google Scholar 

  9. V. L. Berezinskii, Zh. Eksp. Teor. Fiz. 59, 907 (1970) [Sov. Phys. JETP 32, 493 (1970)]; Zh. Eksp. Teor. Fiz. 61, 1144 (1971) [Sov. Phys. JETP 34, 610 (1971)].

    Google Scholar 

  10. J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181 (1973).

    Article  ADS  Google Scholar 

  11. S. E. Korshunov, Usp. Fiz. Nauk 176, 233 (2006) [Phys. Usp. 49, 225 (2006)].

    Article  Google Scholar 

  12. F. G. Mertens and A. R. Bishop, in Nonlinear Science at the Dawn of the 21th Century, Ed. by P. L. Christiansen and M. P. Soerensen (Springer, Berlin, 1999).

    Google Scholar 

  13. A. Thiele, Phys. Rev. Lett. 30, 230 (1973); J. Appl. Phys. 45, 377 (1974).

    Article  ADS  Google Scholar 

  14. F. G. Mertens, H. J. Schnitzer, and A. R. Bishop, Phys. Rev. B 56, 2510 (1997).

    Article  ADS  Google Scholar 

  15. B. A. Ivanov, H. J. Schnitzer, F. G. Mertens, et al., Phys. Rev. B 58, 8464 (1998).

    Article  ADS  Google Scholar 

  16. B. A. Ivanov and G. M. Wysin, Phys. Rev. B 65, 134434 (2002).

    Article  ADS  Google Scholar 

  17. J. P. Park, P. Eames, D. M. Engebretson, et al., Phys. Rev. B 67, 020403(R) (2003).

    ADS  Google Scholar 

  18. S. B. Choe, Y. Acremann, A. Scholl, et al., Science 304, 420 (2004).

    Article  ADS  Google Scholar 

  19. J. Park and P. A. Crowell, Phys. Rev. Lett. 95, 167201 (2005).

    Article  ADS  Google Scholar 

  20. X. Zhu, Zh. Liu, V. Metlushko, et al., Phys. Rev. B 71, 1804089(R) (2005).

    Google Scholar 

  21. B. A. Ivanov and C. E. Zaspel, Phys. Rev. Lett. 94, 027205 (2005).

    Article  ADS  Google Scholar 

  22. B. A. Ivanov and C. E. Zaspel, Appl. Phys. Lett. 81, 1261 (2002).

    Article  ADS  Google Scholar 

  23. C. E. Zaspel, B. A. Ivanov, P. A. Crowell, et al., Phys. Rev. B 72, 024427 (2005).

    Article  ADS  Google Scholar 

  24. K. Y. Guslienko, A. N. Slavin, V. Tiberkevich, et al., Phys. Rev. Lett. 101, 247203 (2008).

    Article  ADS  Google Scholar 

  25. If only the low-frequency gyrotropic mode is excited in the system, the coordinate X of the vortex core is proportional to the average magnetization of the system 〈M〉: 〈M〉 = 2πM s RL[e z, X]/3 [26]. The detailed analysis of the trajectories of the vortex core shows that such a relation is also valid for the excitation of the high-frequency modes.

    Article  ADS  Google Scholar 

  26. K. Yu. Guslienko, B. A. Ivanov, Y. Otani, et al., J. Appl. Phys. 91, 8037 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © B.A. Ivanov, G.G. Avanesyan, A.V. Khvalkovskiy, N.E. Kulagin, C.E. Zaspel, K.A. Zvezdin, 2010, published in Pis’ma v Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2010, Vol. 91, No. 4, pp. 190–195.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanov, B.A., Avanesyan, G.G., Khvalkovskiy, A.V. et al. Non-Newtonian dynamics of the fast motion of a magnetic vortex. Jetp Lett. 91, 178–182 (2010). https://doi.org/10.1134/S0021364010040041

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364010040041

Keywords

Navigation