Skip to main content
Log in

Nanoscale cavitation instability of the surface melt along the grooves of one-dimensional nanorelief gratings on an aluminum surface

  • Plasma, Hydro- and Gas Dynamics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Femtosecond laser nanostructuring at low fluences produces a one-dimensional quasiperiodic grating of grooves on an aluminum surface with a period (≈0.5 μm) that is determined by the length of a surface electromagnetic wave. The structure of the grooves of the surface nanograting is formed by regular nanopeaks following with a period of about 200 nm. Some nanopeaks manifest craters at their tops. It is suggested that nanopeaks are formed due to the frozen nanoscale spallative ablation of a nanolayer of an aluminum melt in quasiperiodic regions corresponding to interference maxima of the laser radiation with the surface electromagnetic wave. The periodicity of the appearance of nanopeaks along grooves is due to the previously predicted mechanism of cavitation deformation of the melt surface in the process of macroscopic spallation ablation. However, in this case, cavitation is coherent (similar to a near-critical spinodal decay) rather than spontaneous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Zhou, M. H. Hong, J. Y. H. Fuh, et al., Appl. Phys. Lett. 88, 023110 (2006).

    Article  ADS  Google Scholar 

  2. T. Jia, M. Baba, M. Suzuki, et al., Opt. Express 16, 1874 (2008).

    Article  ADS  Google Scholar 

  3. E. V. Golosov, A. A. Ionin, Yu. R. Kolobov, et al., J. Exp. Theor. Phys. 113, 14 (2011).

    Article  ADS  Google Scholar 

  4. S. V. Zabotnov, L. A. Golovan’, I. A. Ostapenko, et al., JETP Lett. 83, 69 (2006).

    Article  Google Scholar 

  5. T. H. R. Crawford and H. K. Haugen, Appl. Surf. Sci. 253, 4970 (2007).

    Article  ADS  Google Scholar 

  6. F. Korte, J. Koch, and B. N. Chichkov, Appl. Phys. A 79, 879 (2004).

    Article  ADS  Google Scholar 

  7. A. I. Kuznetsov, J. Koch, and B. N. Chichkov, Appl. Phys. A 94, 221 (2009).

    Article  ADS  Google Scholar 

  8. D. S. Ivanov, Z. Lin, B. Rethfeld, et al., J. Appl. Phys. 107, 013519 (2010).

    Article  ADS  Google Scholar 

  9. V. V. Zhakhovskii, N. A. Inogamov, and K. Nishikhara, JETP Lett. 87, 423 (2008).

    Article  ADS  Google Scholar 

  10. N. A. Inogamov, V. V. Zhakhovsky, A. Y. Faenov, et al., Appl. Phys. A 101, 87 (2010).

    Article  ADS  Google Scholar 

  11. A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47 (2007).

    Article  ADS  Google Scholar 

  12. S. M. Klimentov, T. V. Kononenko, P. A. Pivovarov, et al., Quantum Electron. 32, 433 (2002).

    Article  ADS  Google Scholar 

  13. A. A. Zemlyanov, A. A. Ionin, Yu. E. Geints, et al., J. Exp. Theor. Phys. 111, 724 (2010).

    Article  ADS  Google Scholar 

  14. S. I. Kudryashov and V. I. Emel’yanov, JETP Lett. 73, 666 (2001).

    Article  ADS  Google Scholar 

  15. E. V. Golosov, A. A. Ionin, Yu. R. Kolobov, et al., Ros. Nanotekhnol. 6, 59 (2011).

    Google Scholar 

  16. S. A. Akhmanov, V. I. Emel’yanov, N. I. Koroteev, and V. N. Seminogov, Sov. Phys. Usp. 28, 1084 (1985).

    Article  ADS  Google Scholar 

  17. M. B. Agranat, S. I. Anisimov, S. I. Ashitkov, et al., J. Exp. Theor. Phys. 88, 370 (1999).

    Article  ADS  Google Scholar 

  18. V. S. Makin, R. S. Makin, A. Ya. Vorob’ev, and Ch. Guo, Tech. Phys. Lett. 34, 387 (2008).

    Article  ADS  Google Scholar 

  19. N. A. Inogamov, V. V. Zhakhovskii, S. I. Ashitkov, et al., J. Exp. Theor. Phys. 107, 1 (2008).

    Article  ADS  Google Scholar 

  20. V. P. Skripov and A. V. Skripov, Sov. Phys. Usp. 22, 389 (1979).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Kudryashov.

Additional information

Original Russian Text © A.A. Ionin, S.I. Kudryashov, A.E. Ligachev, S.V. Makarov, L.V. Seleznev, D.V. Sinitsyn, 2011, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2011, Vol. 94, No. 4, pp. 289–292.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ionin, A.A., Kudryashov, S.I., Ligachev, A.E. et al. Nanoscale cavitation instability of the surface melt along the grooves of one-dimensional nanorelief gratings on an aluminum surface. Jetp Lett. 94, 266–269 (2011). https://doi.org/10.1134/S0021364011160065

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364011160065

Keywords

Navigation