Skip to main content
Log in

Electronic excitation energy transfer between CdS quantum dots and carbon nanotubes

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Stationary and transient photoluminescence of CdS quantum dots deposited on silicon substrates and carbon nanotubes is investigated. The photoluminescence spectrum of quantum dots on a silicon substrate is dominated by a band originating from electron transitions between the quantum-confinement levels in the dots. When the quantum dots are deposited on carbon nanotubes, the intensity of this band decreases significantly. Furthermore, the kinetics of the photoluminescence decay becomes faster, which brings evidence of an additional channel for the quantum-dot deexcitation. The analysis of the experimental data demonstrates that the Förster energy transfer from CdS quantum dots to carbon nanotubes is most probably responsible for this channel. The efficiency of this process exceeds 60%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Agranovich and M. D. Galanin, Electronic Excitation Energy Transfer in Condensed Matter (North-Holland, Amsterdam, 1982; Nauka, Moscow, 1978).

    Google Scholar 

  2. V. L. Ermolaev, E. N. Bodunov, E. V. Sveshnikova, and T. A. Shakhverdov, Radiationless Electronic Excitation Energy Transfer (Nauka, Leningrad, 1977) [in Russian].

    Google Scholar 

  3. T. Forster, Ann. Phys. 2, 55 (1948).

    Article  Google Scholar 

  4. D. L. Dexter, J. Chem. Phys. 21, 836 (1953).

    Article  ADS  Google Scholar 

  5. Y. Wang, X. J. Pei, Z. G. Xing, et al., Appl. Phys. Lett. 91, 061902 (2007).

    Article  ADS  Google Scholar 

  6. R. Heitz, I. Mukhametzhanov, P. Chen, et al., Phys. Rev. B 58, 10151 (1998).

    Article  ADS  Google Scholar 

  7. D. L. Huffaker and D. G. Deppe, Appl. Phys. Lett. 73, 366 (1998).

    Article  ADS  Google Scholar 

  8. X. L. Zhou, Y. H. Chen, H. Y. Zhang, et al., J. Appl. Phys. 109, 083501 (2011).

    Article  ADS  Google Scholar 

  9. J. W. Tomm, T. Elsaesser, Yu. I. Mazur, et al., Phys. Rev. B 67, 045326 (2003).

    Article  ADS  Google Scholar 

  10. A. O. Govorov, Phys. Rev. B 68, 075315 (2003).

    Article  ADS  Google Scholar 

  11. M. Lunz, A. L. Bradley, W. Chenbet, et al., Superlatt. Microstruct. 47, 98 (2010).

    Article  ADS  Google Scholar 

  12. T. S. Shamirzaev, D. S. Abramkin, D. V. Dmitriev, et al., Appl. Phys. Lett. 97, 263102 (2010).

    Article  ADS  Google Scholar 

  13. A. O. Govorov, Phys. Rev. B 71, 155323 (2005).

    Article  ADS  Google Scholar 

  14. C. R. Kagan, C. B. Murray, and M. G. Bawendi, Phys. Rev. B 54, 8633 (1996).

    Article  ADS  Google Scholar 

  15. A. Ahmad, K. Kern, and K. Balasubramanian, Chem. Phys. Chem. 10, 905 (2009).

    Article  Google Scholar 

  16. J. M. Lee, J. S. Park, S. H. Lee, et al., Adv. Mater. 23, 629 (2011).

    Article  Google Scholar 

  17. B. Liu, M. A. McCarthy, Y. Yoon, et al., Adv. Mater. 20, 3605 (2008).

    Article  Google Scholar 

  18. A. V. Okotrub, L. G. Bulusheva, A. G. Kudashov, et al., Nanotechnol. Russia 3, 191 (2008).

    Article  Google Scholar 

  19. E. A. Bagaev, K. S. Zhuravlev, L. L. Sveshnikova, et al., Semiconductors 37, 1321 (2003).

    Article  ADS  Google Scholar 

  20. E. A. Bagaev, K. S. Zhuravlev, L. L. Sveshnikova, et al., Semiconductors 42, 702 (2008).

    Article  ADS  Google Scholar 

  21. N. Chestnoy, T. D. Harris, R. Hull, et al., J. Phys. Chem. 90, 3393 (1986).

    Article  Google Scholar 

  22. M. Endo, T. Hayashi, Y. Kim, et al., Phil. Trans. R. Soc. London A 362, 2223 (2004).

    Article  ADS  Google Scholar 

  23. A. A. Zarubanov, L. A. Sveshnikova, and K. S. Zhuravlev, in Proceedings of the 6th International Conference on Quantum Dots, Nottingham, UK, April 26–30, 2010, p. 237.

  24. R. I. Anderson, Solid State Electron. 5, 341 (1962).

    Article  ADS  Google Scholar 

  25. A. L. Goodman, J. Appl. Phys. 35, 573 (1964).

    Article  ADS  Google Scholar 

  26. S. Suzuki, C. Bower, Y. Watanabe, et al., Appl. Phys. Lett. 76, 4007 (2000).

    Article  ADS  Google Scholar 

  27. D. V. Talapin, J.-S. Lee, M. V. Kovalenko, et al., Chem. Rev. 110, 410 (2010).

    Article  Google Scholar 

  28. K. S. Novoselov, A. K. Geim, S. V. Morozov, et al., Nature 438, 197 (2005).

    Article  ADS  Google Scholar 

  29. D. Yu. Protasov, W.-B. Jian, K. A. Svit, et al., J. Phys. Chem. C 115, 20148 (2011).

    Article  Google Scholar 

  30. P. N. Gevko, A. V. Okotrub, L. G. Bulusheva, et al., Phys. Solid State 48, 1007 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Zarubanov.

Additional information

Original Russian Text © A.A. Zarubanov, K.S. Zhuravlev, T.A. Duda, A.V. Okotrub, 2012, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2012, Vol. 95, No. 7, pp. 403–407.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zarubanov, A.A., Zhuravlev, K.S., Duda, T.A. et al. Electronic excitation energy transfer between CdS quantum dots and carbon nanotubes. Jetp Lett. 95, 362–365 (2012). https://doi.org/10.1134/S0021364012070119

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364012070119

Keywords

Navigation