Skip to main content
Log in

Graphene-based tunnel junction

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The tunneling current in a junction formed by graphene half-planes and bilayer graphene with two possible packing types and two possible orientations of the crystal lattice is calculated by the Green’s function technique in the framework of the tight-binding approximation. It is shown that the band structure of graphene oriented toward the junction by the armchair-type edges leads to a power-law dependence of the tunneling current on applied voltage being specific for each specific kind of graphene. The characteristic features of this dependence are determined by the change in the number of transport channels with the growth of the applied voltage. For all junctions under study with zigzag edges oriented toward each other, it is found that the tunneling current exhibits characteristic peaks related to the existence of the localized edge states. The effects induced by the gate voltage are also studied. For the structures with zigzag edges, it is shown that the effect of switching off/on takes place for the junctions. The junctions formed by the graphene armchair edges do not exhibit any pronounced switching phenomena and the growth of the bias voltage results in higher values of the conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Jia, M. Hofmann, V. Meunier, B. G. Sumpter, J. Campos-Delgado, J. M. Romo-Herrera, H. Son, Y.-P. Hsieh, A. Reina, J. Kong, M. Terrones, and M. S. Dresselhaus, Science 323, 1701 (2009).

    Article  ADS  Google Scholar 

  2. C. Jin, H. Lan, L. Peng, K. Suenaga, and S. Iijima, Phys. Rev. Lett. 102, 205501 (2009).

    Article  ADS  Google Scholar 

  3. A. Chuvilin, J. C. Meyer, G. Algara-Siller, and U. Kaiser, New J. Phys. 11, 083019 (2009).

    Article  ADS  Google Scholar 

  4. Y. He, H. Dong, T. Li, C. Wang, W. Shao, Y. Zhang, L. Jiang, and W. Hu, Appl. Phys. Lett. 97, 133301 (2010).

    Article  ADS  Google Scholar 

  5. H. M. Wang, Z. Zheng, Y. Y. Wang, J. J. Qiu, Z. B. Guo, Z. X. Shen, and T. Yu, Appl. Phys. Lett. 96, 023106 (2010).

    Article  ADS  Google Scholar 

  6. G. Jo, M. Choe, S. Lee, W. Park, Y. H. Kahng, and T. Lee, Nanotehnology 23, 112001 (2012).

    Article  ADS  Google Scholar 

  7. X. Huang, Z. Zeng, Z. Fan, J. Liu, and H. Zhang, Adv. Mater. 24, 5979 (2012).

    Article  Google Scholar 

  8. D. A. Ryndyk, J. Bundesmann, M.-H. Lin, and K. Richter, Phys. Rev. B 86, 195425 (2012).

    Article  ADS  Google Scholar 

  9. A. M. Ionescu and H. Riel, Nature 479, 329 (2011).

    Article  ADS  Google Scholar 

  10. M. S. Janga, H. Kimb, Y.-W. Sonc, H. A. Atwatera, and W. A. Goddard, Proc. Natl. Acad. Sci. 110, 8786 (2012).

    Article  ADS  Google Scholar 

  11. V. H. Nguyen, Y. M. Niquet, and P. Dollfus, Semicond. Sci. Technol. 27, 105018 (2012).

    Article  ADS  Google Scholar 

  12. P. Michetti, M. Cheli, and G. Iannacconea, Appl. Phys. Lett. 96, 133508 (2010).

    Article  ADS  Google Scholar 

  13. D. A. Svintsov, V. V. Vyurkov, V. F. Lukichev, A. A. Orlikovskii, A. Burenkov, and R. Okhsner, Semiconductors 47, 279 (2012).

    Article  ADS  Google Scholar 

  14. C. Berthod and T. Giamarchi, Phys. Rev. B 84, 155414 (2011).

    Article  ADS  Google Scholar 

  15. T. N. Todorov, G. A. D. Briggs, and A. P. Sutton, J. Phys.: Condens. Matter 5, 2389 (1993).

    ADS  Google Scholar 

  16. M. P. Lopez Sancho, J. M. Lopez Sancho, and J. Rubio, Phys. F: Met. Phys. 14, 1205 (1984).

    Article  ADS  Google Scholar 

  17. M. P. Lopez Sancho, J. M. Lopez Sancho, and J. Rubio, Phys. F: Met. Phys. 15, 851 (1985).

    Article  ADS  Google Scholar 

  18. E. L. Wolf, Principles of Electron Tunneling Spectroscopy (Oxford Univ. Press, New York, 1989).

    Google Scholar 

  19. W. A. Harrison, Phys. Rev. 123, 85 (1961).

    Article  ADS  Google Scholar 

  20. V. L. Katkov and V. A. Osipov, J. Phys.: Condens. Matter 20, 035204 (2008).

    ADS  Google Scholar 

  21. V. L. Katkov and V. A. Osipov, JETP Lett. 90, 304 (2009).

    Article  Google Scholar 

  22. V. L. Katkov and V. A. Osipov, Phys. Part. Nucl. 41, 1027 (2010).

    Article  Google Scholar 

  23. E. V. Castro, M. P. Lopez-Sancho, and M. A. H. Vozmediano, New J. Phys. 11, 095017 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Katkov.

Additional information

Original Russian Text © V.L. Katkov, V.A. Osipov, 2013, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2013, Vol. 98, No. 11, pp. 782–787.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katkov, V.L., Osipov, V.A. Graphene-based tunnel junction. Jetp Lett. 98, 689–694 (2014). https://doi.org/10.1134/S0021364013240119

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364013240119

Keywords

Navigation