Skip to main content
Log in

Emission of photoexcited charge carriers from InAs/GaAs quantum dots grown by gas-phase epitaxy

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

A model describing the emission of photoexcited electrons and holes from an array of InAs quantum dots into the GaAs matrix is suggested. The analytical expression obtained for the emission efficiency takes into account the thermal emission of charge carriers into the GaAs matrix and two-dimensional states of the InAs wetting layer, tunneling and thermally activated tunneling escape, and electron transitions between the quantum-confinement levels in the conduction band of InAs. The temperature dependences of the photosensitivity in the regions of the ground-state and first excited-state optical transitions in InAs/GaAs quantum dots grown by gas-phase epitaxy are investigated experimentally. A number of quantum dot parameters are determined by fitting the results of a theoretical calculation to the experimental data. Good agreement between the theoretical and experimental results is obtained in this way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. V. Maximov, V. M. Ustinov, A. E. Zhukov, N. V. Kryzhanovskaya, A. S. Payusov, I. I. Novikov, N. Yu. Gordeev, Yu. M. Shernyakov, I. Krestnikov, D. Livshits, S. Mikhrin, and A. Kovsh, Semicond. Sci. Technol. 23, 105004 (2008).

    Article  ADS  Google Scholar 

  2. P. Bhattacharya, Z. Mi, J. Yang, D. Basu, and D. Saha, J. Cryst. Growth 311, 1625 (2009).

    Article  ADS  Google Scholar 

  3. L. Mi-Feng, N. Hai-Qiao, D. Ying, B. David, K. Liang, C. M. Ana, and N. Zhi-Chuan, Chin. Phys. B 23, 027803 (2014).

    Article  ADS  Google Scholar 

  4. Z. Y. Zhang, R. A. Hogg, X. Q. Lv, and Z. G. Wang, Adv. Opt. Photon. 2, 201 (2010).

    Article  Google Scholar 

  5. A. D. Stiff-Roberts, J. Nanophoton. 3, 031607 (2009).

    Article  Google Scholar 

  6. Y.-F. Lao, S. Wolde, A. G. Unil Perera, Y. H. Zhang, T.M. Wang, H. C. Liu, J. O. Kim, T. Schuler-Sandy, Zh.-B. Tian, and S. S. Krishna, Appl. Phys. Lett. 103, 241115 (2013).

    Article  ADS  Google Scholar 

  7. G. Moreau, A. Martinez, D.-Y. Cong, K. Merghem, A. Miard, A. Lemaître, P. Voisin, A. Ramdane, I. Krestnikov, A. R. Kovsh, M. Fischer, and J. Koeth, Appl. Phys. Lett. 91, 091118 (2007).

    Article  ADS  Google Scholar 

  8. P. D. Buckle, P. Dawson, S. A. Hall, X. Chen, M. J. Steer, D. J. Mowbray, M. S. Skolnick, and M. Hopkinson, J. Appl. Phys. 86, 2555 (1999).

    Article  ADS  Google Scholar 

  9. V. V. Ilchenko, S. D. Lin, C. P. Lee, and O. V. Tretyak, J. Appl. Phys. 89, 1172 (2001).

    Article  ADS  Google Scholar 

  10. B. N. Zvonkov, I. G. Malkina, E. R. Lin’kova, V. Ya. Aleshkin, I. A. Karpovich, and D. O. Filatov, Semiconductors 31, 941 (1997).

    Article  ADS  Google Scholar 

  11. C. M. A. Kapteyn, F. Heinrichsdorff, O. Stier, R. Heitz, M. Grundmann, N. D. Zakharov, D. Bimberg, and P. Werner, Phys. Rev. B 60, 14265 (1999).

    Article  ADS  Google Scholar 

  12. P. W. Fry, I. E. Itskevich, S. R. Parnell, J. J. Finley, L. R. Wilson, K. L. Schumacher, D. J. Mowbray, M. S. Skolnick, M. Al-Khafaji, A. G. Cullis, M. Hopkinson, J. C. Clark, and G. Hill, Phys. Rev. B 62, 16784 (2000).

    Article  ADS  Google Scholar 

  13. W. H. Chang, T. M. Hsu, C. C. Huang, S. L. Hsu, C. Y. Lai, N. T. Yeh, T. E. Nee, and J. I. Chyi, Phys. Rev. B 62, 6959 (2000).

    Article  ADS  Google Scholar 

  14. P. N. Brunkov, A. Patane, A. Levin, L. Eaves, P. C. Main, Yu. G. Musikhin, B. V. Volovik, A. E. Zhukov, V. M. Ustinov, and S. G. Konnikov, Phys. Rev. B 65, 085326 (2002).

    Article  ADS  Google Scholar 

  15. A. A. Gutkin, P. N. Brunkov, A. Yu. Egorov, A. E. Zhukov, and S. G. Konnikov, Semiconductors 42, 1104 (2008).

    Article  ADS  Google Scholar 

  16. S. Ghosh, B. Kochman, J. Singh, and P. Bhattacharya, Appl. Phys. Lett. 76, 2571 (2000).

    Article  ADS  Google Scholar 

  17. M. Geller, PhD Thesis (Technical University of Berlin, 2007).

  18. D. V. Lang, J. Appl. Phys. 45, 3023 (1974).

    Article  ADS  Google Scholar 

  19. E. N. Korol’, Sov. Phys. Solid State 19, 737 (1977).

    Google Scholar 

  20. S. Makram-Ebeid and M. Lannoo, Phys. Rev. Lett. 48, 1281 (1982).

    Article  ADS  Google Scholar 

  21. A. Garcia-Cristobal, A. W. Minnaert, V. M. Fomin, J. T. Devreese, A. Yu. Silov, J. E. M. Haverkort, and J. H. Wolter, Phys. Status Solidi B 215, 331 (1999).

    Article  ADS  Google Scholar 

  22. R. Heitz, I. Mukhametzhanov, O. Stier, A. Madhukar, and D. Bimberg, Phys. Rev. Lett. 83, 4654 (1999).

    Article  ADS  Google Scholar 

  23. B. N. Zvonkov, I. A. Karpovich, N. V. Baidus’, D. O. Filatov, and S. V. Morozov, Semiconductors 35, 93 (2001).

    Article  ADS  Google Scholar 

  24. R. J. Warburton, C. Böbefeld, C. S. Dürr, K. Karrai, J. P. Kotthaus, G. Medeiros-Ribeiro, and P. M. Petroff, Phys Rev. Lett. 79, 5282 (1997).

    Article  ADS  Google Scholar 

  25. E. Harbord, P. Spencer, E. Clarke, and R. Murray, Phys. Rev. B 80, 195312 (2009).

    Article  ADS  Google Scholar 

  26. G. Trevisi, L. Seravalli, P. Frigeri, C. Bocchi, V. Grillo, L. Nasi, I. Suárez, D. Rivas, G. Muñoz-Matutano, and J. Martínez-Pastor, Cryst. Res. Technol. 46, 801 (2011).

    Article  Google Scholar 

  27. H. Y. Kim, M.-Y. Ryu, and J. S. Kim, J. Luminesc. 132, 1759 (2012).

    Article  ADS  Google Scholar 

  28. G. A. Narvaez, G. Bester, and A. Zunger, Phys. Rev. B 74, 075403 (2006).

    Article  ADS  Google Scholar 

  29. M. Grundmann, O. Stier, and D. Bimberg, Phys. Rev. B 52, 11969 (1995).

    Article  ADS  Google Scholar 

  30. E. D. Pavlova, A. P. Gorshkov, A. I. Bobrov, N. V. Malekhonova, and B. N. Zvonkov, Semiconductors 47, 1591 (2013).

    Article  ADS  Google Scholar 

  31. O. Engström, M. Kaniewska, Y. Fu, J. Piscator, and M. Malmkvist, Appl. Phys. Lett. 85, 2908 (2004).

    Article  ADS  Google Scholar 

  32. O. Stier, M. Grundmann, and D. Bimberg, Phys. Rev. B 59, 5688 (1999).

    Article  ADS  Google Scholar 

  33. http://www.nextnano.com/nextnanoplus

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Volkova.

Additional information

Original Russian Text © N.S. Volkova, A.P. Gorshkov, D.O. Filatov, D.S. Abramkin, 2014, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2014, Vol. 100, No. 3, pp. 175–180.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkova, N.S., Gorshkov, A.P., Filatov, D.O. et al. Emission of photoexcited charge carriers from InAs/GaAs quantum dots grown by gas-phase epitaxy. Jetp Lett. 100, 156–161 (2014). https://doi.org/10.1134/S0021364014150144

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364014150144

Keywords

Navigation