Skip to main content
Log in

Solitons in a third-order nonlinear Schrödinger equation with the pseudo-Raman scattering and spatially decreasing second-order dispersion

  • Methods of Theoretical Physics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Evolution of solitons is addressed in the framework of a third-order nonlinear Schrödinger equation (NLSE), including nonlinear dispersion, third-order dispersion and a pseudo-stimulated-Raman-scattering (pseudo- SRS) term, i.e., a spatial-domain counterpart of the SRS term, which is well known as a part of the temporal-domain NLSE in optics. In this context, it is induced by the underlying interaction of the high-frequency envelope wave with a damped low-frequency wave mode. In addition, spatial inhomogeneity of the second-order dispersion (SOD) is assumed. As a result, it is shown that the wavenumber downshift of solitons, caused by the pseudo-SRS, can be compensated with the upshift provided by decreasing SOD coefficients. Analytical results and numerical results are in a good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Infeld and G. Rowlands, Nonlinear Waves, Solitons, and Chaos (Cambridge Univ. Press, Cambridge, 2000).

    Book  MATH  Google Scholar 

  2. G. P. Agrawal, Nonlinear Fiber Optic (Academic, San Diego, 2001).

    Google Scholar 

  3. J. Yang, Solitons in Field Theory and Nonlinear Analysis (Springer, New York, 2001).

    Book  MATH  Google Scholar 

  4. Y. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic, San Diego, 2003).

    Google Scholar 

  5. L. A. Dickey, Soliton Equation and Hamiltonian Systems (World Scientific, New York, 2005).

    Google Scholar 

  6. B. A. Malomed, Soliton Management in Periodic Systems (Springer, New York, 2006).

    MATH  Google Scholar 

  7. T. Dauxois and M. Peyrard, Physics of Solitons (Cambridge Univ. Press, Cambridge, 2006).

    MATH  Google Scholar 

  8. M. Sich, D. N. Krizhanovskii, M. S. Skolnick, A. V. Gorbach, R. Hartley, D. V. Skryabin, E. A. Cerda-Mendez, K. Biermann, R. Hey, and P. V. Santos, Nature Photon. 6, 50 (2012).

    Article  ADS  Google Scholar 

  9. M. Kauranen and A. V. Zayats, Nature Photon. 6, 737 (2012).

    Article  ADS  Google Scholar 

  10. E. A. Cerda-Mendez, D. Sarkar, D. N. Krizhanovskii, S. S. Gavrilov, K. Biermann, M. S. Skolnick, and P. V. Santos, Phys. Rev. Lett. 111, 146401 (2013).

    Article  ADS  Google Scholar 

  11. V. E. Zakharov and A. B. Shabat, Sov. Phys. JETP 34, 62 (1972).

    ADS  MathSciNet  Google Scholar 

  12. A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23, 142 (1973).

    Article  ADS  Google Scholar 

  13. K. Tajima, Opt. Lett. 12, 54 (1987).

    Article  ADS  Google Scholar 

  14. J. R. Oliviera and M. A. Moura, Phys. Rev. E 57, 4751 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  15. F. M. Mitschke and L. F. Mollenauer, Opt. Lett. 11, 659 (1986).

    Article  ADS  Google Scholar 

  16. J. P. Gordon, Opt. Lett. 11, 662 (1986).

    Article  ADS  Google Scholar 

  17. Y. Kodama, J. Stat. Phys. 39, 597 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  18. Y. Kodama and A. Hasegawa, IEEE J. Quant. Electron. 23, 510 (1987).

    Article  ADS  Google Scholar 

  19. C. E. Zaspel, Phys. Rev. Lett. 82, 723 (1999).

    Article  ADS  Google Scholar 

  20. B. Hong and D. Lu, Int. J. Nonlin. Sci. 7, 360 (2009).

    MathSciNet  Google Scholar 

  21. V. I. Karpman, Eur. Phys. J. B 39, 341 (2004).

    Article  ADS  Google Scholar 

  22. E. M. Gromov and V. I. Talanov, J. Exp. Theor. Phys. 83, 73 (1996).

    ADS  Google Scholar 

  23. E. M. Gromov and V. I. Talanov, Chaos 10, 551 (2000).

    Article  ADS  Google Scholar 

  24. E. M. Gromov, L. V. Piskunova, and V. V. Tyutin, Phys. Lett. A 256, 153 (1999).

    Article  ADS  Google Scholar 

  25. M. A. Obregon and Yu. A. Stepanyants, Phys. Lett. A 249, 315 (1998).

    Article  ADS  Google Scholar 

  26. M. Scalora, M. Syrchin, N. Akozbek, E. Y. Poliakov, G. D. Aguanno, N. Mattiucci, M. J. Bloemer, and A. M. Zheltikov, Phys. Rev. Lett. 95, 013902 (2005).

    Article  ADS  Google Scholar 

  27. S. C. Wen, Y. Wang, W. Su, Y. Xiang, X. Fu, and D. Fan, Phys. Rev. E 73, 036617 (2006).

    Article  ADS  Google Scholar 

  28. M. Marklund, P. K. Shukla, and L. Stenflo, Phys. Rev. E 73, 037601 (2006).

    Article  ADS  Google Scholar 

  29. N. L. Tsitsas, R. I. Kourakis, P. G. Kevrekidis, and D. J. Frantzeskakis, Phys. Rev. E 79, 037601 (2009).

    Article  ADS  Google Scholar 

  30. Y. S. Kivshar, Phys. Rev. A 42, 1757 (1990).

    Article  ADS  Google Scholar 

  31. Y. S. Kivshar and B. A. Malomed, Opt. Lett. 18, 485 (1993).

    Article  ADS  Google Scholar 

  32. B. A. Malomed and R. S. Tasgal, J. Opt. Soc. Am. B 15, 162 (1998).

    Article  ADS  Google Scholar 

  33. F. Biancalama, D. V. Skrybin, and A. V. Yulin, Phys. Rev. E 70, 011615 (2004).

    Google Scholar 

  34. R.-J. Essiambre and G. P. Agrawal, J. Opt. Soc. Am. B 14, 314 (1997).

    Article  ADS  Google Scholar 

  35. R.-J. Essiambre and G. P. Agrawal, J. Opt. Soc. Am. B 14, 323 (1997).

    Article  ADS  Google Scholar 

  36. A. Andrianov, S. Muraviev, A. Kim, and A. Sysoliatin, Laser Phys. 17, 1296 (2007).

    Article  ADS  Google Scholar 

  37. S. Chernikov, E. Dianov, D. Richardson, and D. Payne, Opt. Lett. 18, 476 (1993).

    Article  ADS  Google Scholar 

  38. E. M. Gromov and B. A. Malomed, J. Plasma Phys. 79, 1057 (2013).

    Article  ADS  Google Scholar 

  39. E. M. Gromov and B. A. Malomed, Opt. Commun. 320, 88 (2014).

    Article  ADS  Google Scholar 

  40. V. E. Zakharov, Sov. Phys. JETP 35, 908 (1972).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Tyutin.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aseeva, N.V., Gromov, E.M., Onosova, I.V. et al. Solitons in a third-order nonlinear Schrödinger equation with the pseudo-Raman scattering and spatially decreasing second-order dispersion. Jetp Lett. 103, 653–657 (2016). https://doi.org/10.1134/S0021364016100027

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364016100027

Navigation