Skip to main content
Log in

Synthesis of diamond structures from the jet of the H2 + CH4 mixture in a cocurrent axisymmetric hydrogen flow

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

The flow of a hydrogen–methane mixture through heated coaxial cylindrical tungsten channels with a built-in tungsten wire is studied by the Direct Simulation Monte Carlo method. The purpose of the study is further development of the gas-phase method of deposition of diamond structures. The axial distributions of the concentrations of the components of the hydrogen–carbon mixture are calculated by means of solving a system of chemical kinetics equations. A series of experiments on deposition of diamond structures from various flows of the hydrogen–methane mixture is performed. The calculated results are compared with the experimental data. Based on these comparisons, it is concluded that numerical optimization of operation modes of gas-dynamic reactors can be used for deposition of diamond structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. W. May, “Diamond Thin Films: a 21st-Century Material,” Philos. Trans. Roy. Soc. London. Ser. A 358, 473–495 (2000).

    Article  ADS  Google Scholar 

  2. R. A. Khmelnitskii, “Prospects of Growing of Large-Size Single-Crystal Diamond,” Usp. Fiz. Nauk 185 (2), 143–159 (2015).

    Article  Google Scholar 

  3. A. K. Rebrov, “Possibilities of Gas-Phase Synthesis of Diamond Structures,” Usp. Fiz. Nauk 187 (2), 193–200 (2017).

    Article  Google Scholar 

  4. A. A. Emel’yanov, A. K. Rebrov, and I. B. Yudin, “Gas-Jet Synthesis of Diamond-Like Films from an H2 + CH4 Gas Mixture Flow,” Prikl. Mekh. Tekh. Fiz. 55 (2), 94–100 (2014) [J. Appl. Mech. Tech. Phys. 55 (2), 270–275 (2014)].

    Google Scholar 

  5. A. K. Rebrov, M. N. Andreev, T. T. B’yadovskiy, et al., “The Reactor-Activator for Gas-Jet Deposition of Diamond Structures,” Rev. Sci. Instrum. 87, 103902 (2016).

    Article  ADS  Google Scholar 

  6. A. A. Emel’yanov, I. B. Yudin, A. K. Rebrov, and V. A. Lebedev, “Estimation of Thermocouple Measurements of Temperature of a Cylindrical Spiral,” in Abstracts of the 31st All-Russia Conf. “Siberian Thermophysical Workshop,” Novosibirsk, November 17–19, 2014 (Inst. Thermophys., Novosibirsk, 2014), p. 91.

    Google Scholar 

  7. A. Rebrov, “Gas Jet Deposition of Diamond Structures by Thermal Activation on an Expanded Surface,” Diamond Related Materials 72, 20–25 (2017).

    Article  ADS  Google Scholar 

  8. A. K. Rebrov and I. B. Yudin, “Heterogeneous Physicochemical Processes in a Channel Flow of a Rarefied Gas,” Dokl. Akad. Nauk 468 (1), 33–36 (2016).

    Google Scholar 

  9. M. Yu. Plotnikov and E. V. Shkarupa, “Heterogeneous Activation of Rarefied Hydrogen in Thin Tubes,” Vacuum 129, 31–37 (2016).

    Article  ADS  Google Scholar 

  10. M. S. Ivanov and S. V. Rogasinsky, “Analysis of Numerical Techniques of the Direct Simulation Monte Carlo Method in Rarefied Gas Dynamics,” Soviet J. Numer. Anal. Math. Modelling 3 (6), 453–466 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  11. G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Clarendon Press, Oxford, 1994).

    Google Scholar 

  12. A. A. Morozov, M. Yu. Plotnikov, A. K. Rebrov, and I. B. Yudin, “DSMC Study of Hydrogen and Methane Flows in a Hot Tube,” in Proc. of the 30th Intern. Symp. on Rarefied Gas Dynamics, Victoria (Canada), July 10–15, 2016 (AIP Conf. Proc., New York, 2016), Vol. 1786, p. 050015.

    Google Scholar 

  13. S. L. Kharat’yan, A. A. Chatilyan, and A. G. Merzhanov, “Kinetics of Tungsten–Methane Interaction,” Khim. Fiz. 6 (2), 225–233 (1987).

    Google Scholar 

  14. M. Sommer and F. W. Smith, “Activity of Tungsten and Rhenium Filaments in CH4/H2 and C2H2/H2 Mixtures: Importance for Diamond CVD,” J. Materials Res. 5 (11), 2433–2440 (1990).

    Article  ADS  Google Scholar 

  15. P. W. May, M. N. R. Ashfold, and Yu. A. Mankelevich, “Microcrystalline, Nanocrystalline and Ultrananocrystalline Diamond Chemical Vapor Deposition: Experiment and Modeling of the Factors Controlling Growth Rate, Nucleation and Crystal Size,” J. Appl. Phys. 101, 053115 (2007).

    Article  ADS  Google Scholar 

  16. G. P. Smith, D. M. Golden, M. Frenklach, et al., GRI-Mech. http://www.me.berkeley.edu/gri-mech/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Rebrov.

Additional information

Original Russian Text © A.K. Rebrov, A.A. Emel’yanov, M.Yu. Plotnikov, I.B. Yudin.

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 58, No. 5, pp. 142–150, September–October, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rebrov, A.K., Emel’yanov, A.A., Plotnikov, M.Y. et al. Synthesis of diamond structures from the jet of the H2 + CH4 mixture in a cocurrent axisymmetric hydrogen flow. J Appl Mech Tech Phy 58, 881–888 (2017). https://doi.org/10.1134/S0021894417050145

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894417050145

Keywords

Navigation