Skip to main content
Log in

Parallel and distributed computing in problems of supercomputer simulation of molecular liquids by the Monte Carlo method

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

An effective strategy of molecular Monte Carlo simulation is proposed. The strategy is based on a combination of two key approaches to parallel computing. The advantage of spatial (domain) decomposition is the high scalability of computing algorithms by splitting “big tasks” into several simultaneously solvable subtasks. However, the domain size in this method can be reduced to a certain limit only. Particle decomposition (division of program loops into portions) is, by contrast, very efficient in the study of small and medium size objects, but is poorly scalable and quickly exhausts the computer system memory with increasing size of the model. The combination of the approaches helps neutralize their limitations and create efficient supercomputing programs for the study of molecular models consisting of hundreds of millions of atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Oxford University Press, New York (1987).

    Google Scholar 

  2. M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra, MPI: The Complete Reference, MIT Press, Boston (1996).

    Google Scholar 

  3. B. A. Wichmann and I. D. Hill, Comput. Statist. Data Anal., 51, 1614–1622 (2006).

    Article  Google Scholar 

  4. J. L. F. Abascal and C. Vega, J. Chem. Phys., 123, 234505 (1–12) (2005).

    Article  CAS  Google Scholar 

  5. N. A. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, et al., J. Chem. Phys., 21, 1087–1092 (1953).

    Article  CAS  Google Scholar 

  6. G. Hummer, D. M. Soumpasis, and M. Neumann, J. Phys.: Condens. Matter., 6, A141–A144 (1994).

    Article  CAS  Google Scholar 

  7. W. W. Wood, in: Physics of Simple Liquids, H. N. V. Temperley, J. S. Rowlinson, and G. S. Rushbrooke (eds.) Wiley-Interscience, New York (1968).

  8. Y. Okamoto, J. Mol. Graphics Modell., 22, 425–439 (2004).

    Article  CAS  Google Scholar 

  9. K. Hukushima and K. Nemoto, J. Phys. Soc. Jpn., 65, 1604–1608 (1996).

    Article  CAS  Google Scholar 

  10. S. Plimpton, J. Comput. Phys., 117, 1–19 (1995).

    Article  CAS  Google Scholar 

  11. G. S. Heffelfinger and M. E. Lewitt, J. Comput. Chem., 17, 250–265 (1996).

    Article  CAS  Google Scholar 

  12. A. V. Teplukhin, Matem. Model., 16, No. 11, 15–24 (2004).

    Google Scholar 

  13. M. D. Kalugin and A. V. Teplukhin, J. Struct. Chem., 50, No. 5, 841–852 (2009).

    Article  CAS  Google Scholar 

  14. J. L. Gustafson, Commun. ACM, 31, 532/533 (1988).

    Article  Google Scholar 

  15. H. A. Slim and M. R. Wilson, J. Chem. Theory Comput., 4, 1570–1575 (2008).

    Article  CAS  Google Scholar 

  16. D. M. Zuckerman, Annu. Rev. Biophys., 40, 41–62 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Teplukhin.

Additional information

Original Russian Text Copyright © 2013 by A. V. Teplukhin

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 54, No. 1, pp. 71–81, January–February, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teplukhin, A.V. Parallel and distributed computing in problems of supercomputer simulation of molecular liquids by the Monte Carlo method. J Struct Chem 54, 65–74 (2013). https://doi.org/10.1134/S0022476613010095

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476613010095

Keywords

Navigation