Skip to main content
Log in

Xanes Specroscopic Diagnostics of the 3D Local Atomic Structure of Nanostructured Materials

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

A review of current works on XANES spectroscopy applied for the determination of parameters of a threedimensional local atomic structure of nanostructured materials is given. Special attention is paid to a new method based on the theoretical analysis of XANES spectra by means of multivariate interpolation. The uniqueness of the technique consists not only in the highly accurate (up to 0.01 Å) determination of interatomic distances in materials without a long-range order in the atomic arrangement but also the estimation of the angular distribution of atoms (i.e. chemical bond angles) in any condensed materials. Several types of nanostructured materials, including coordination compounds, semiconductor quantum dots, nanosized structures in quasicrystals and extraterrestrial materials are given as examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Lee. X-Ray Diffraction for Materials Research: From Fundamentals to Applications. UK: Taylor and Francis, 2016.

    Google Scholar 

  2. Materials Characterization Using Nondestructive Evaluation (NDE) Methods /Eds. G. Huebschen, I. Altpeter, R. Tshuncky, and J.-G. Herrmann. Amsterdam: Elsevier, 2016.

  3. D. Natelson. Nanostructures and Nanotechnology. UK, Cambridge: Cambridge University Press, 2015.

    Book  Google Scholar 

  4. J. C. H. Spence. High-Resolution Electron Microscopy. UK, Oxford: Oxford University Press, 2013.

    Book  Google Scholar 

  5. L. N. Mazalov. X-Ray Spectra [in Russian]. Novosibirsk: Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, 2003.

    Google Scholar 

  6. J. van Bokhoven and C. Lamberti. X-ray Absorption and X-ray Emission Spectroscopy. Theory and Applications. UK: Willey, 2016.

    Book  Google Scholar 

  7. XAFS Techniques for Catalysts, Nanomaterials, and Surfaces /Eds. Y. Iwasawa, K. Asakura, M. Tada. Switzerland: Springer, 2017.

  8. G. V. Fetisov. Synchrotron Radiation. Methods of Studying the Matter Structure [in Russian]. Moscow: Fizmatlit, 2007.

    Google Scholar 

  9. I. Ya. Nikiforov. Interaction of X-Ray Radiation with Matter [in Russian]. Rostov-on-Don: Don State Technical University, 2011.

    Google Scholar 

  10. C. S. Schnohr and M. C. Ridgway. X-ray Absorption Spectroscopy of Semiconductors. Heidelberg, 2015.

    Book  Google Scholar 

  11. M. Newville. Rev. Mineral. Geochem., 2014, 78,33.

    Article  CAS  Google Scholar 

  12. S. Della Longa, S. Pin, R. Cortes, et al. Biophys J., 1998, 75, 3154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. F. A. Lima, T. J. Penfold, R. M. van der Veen, et al. Phys. Chem. Chem. Phys., 2014, 16, 1617.

    Article  CAS  PubMed  Google Scholar 

  14. Y. Wang, Sh. Jin, J. Li, et al. Radiat. Phys. Chem., 2017, 137,88.

    Article  CAS  Google Scholar 

  15. M. Benfatto and S. Della Longa. J. Synchrotron Radiat., 2001, 8, 1087.

    Article  CAS  PubMed  Google Scholar 

  16. G. Smolentsev and A. V. Soldatov. J. Synchrotron Radiat., 2006, 13,19.

    Article  CAS  PubMed  Google Scholar 

  17. G. Smolentsev and A. V. Soldatov. Comput. Mater. Sci., 2007, 39,569.

    Article  CAS  Google Scholar 

  18. Developed FitIt 3.0 program package may be obtained free of charge at http://nano.sfedu.ru/fitit_r.html.

  19. F. Ericson, A. Honarfar, O. Prakash, et al. Chem. Phys. Lett., 2017, 683,559.

    Article  CAS  Google Scholar 

  20. Y. Liu, W. Xu, J. Zhang, et al. J. Am. Chem. Soc., 2017, 139, 5023.

    Article  CAS  PubMed  Google Scholar 

  21. A. Drzewiecka-Antonik, W. Ferenc, P. Rejmak, et al. Polyhedron, 2017, 133,54.

    Article  CAS  Google Scholar 

  22. D. Kochubey, V. Kaichev, A. Saraev, et al. J. Phys. Chem. C., 2013, 117, 2753.

    Article  CAS  Google Scholar 

  23. N. Schuth, S. Mebs, H. Gehring, et al. J. Phys.: Conf. Ser., 2016, 712, 012134.

    Google Scholar 

  24. M. C. Feiters, G. A. Metselaar, B. B. Wentzel, et al. Ind. Eng. Chem. Res., 2005, 44, 8631.

    Article  CAS  Google Scholar 

  25. M. A. Kremennaya, M. A. Soldatov, V. A. Streltsov, and A. V. Soldatov. J. Phys.: Conf. Ser., 2016, 712, 012138.

    Google Scholar 

  26. I. Alperovich, G. Smolentsev, D. Moonshiram, et al. J. Am. Chem. Soc., 2011, 133, 15786.

    Article  CAS  PubMed  Google Scholar 

  27. I. Alperovich, D. Moonshiram, J. J. Concepcion, and Y. Pushkar. J. Phys. Chem. C, 2013, 117, 18994.

    Article  CAS  Google Scholar 

  28. K. A. Lomachenko, C. Garino, E. Gallo, et al. Phys. Chem. Chem. Phys., 2013, 15, 16152.

    Article  CAS  PubMed  Google Scholar 

  29. M. D. Hall, H. L. Daly, J. Z. Zhang, et al. Metallomics, 2012, 4,568.

    Article  CAS  PubMed  Google Scholar 

  30. O. E. Polozhentsev, V. K. Kochkina, V. L. Mazalova, and A. V. Soldatov. J. Struct. Chem., 2016, 57, 1558.

    Google Scholar 

  31. G. A. Fernandez, A. S. Picco, M. R. Ceolin, et al. Organometallics, 2013, 32, 6315.

    Article  CAS  Google Scholar 

  32. M. A. Soldatov, I. Ascone, A. Congiu-Castellano, et al. J. Phys.: Conf. Ser., 2009, 190, 012210.

    Google Scholar 

  33. R. G. Parr and W. Yang. Density-Functional Theory of Atoms and Molecules. USA, New-York: Oxford University Press, 1989.

    Google Scholar 

  34. Recent Developments and Applications of Modern Density Functional Theory /Ed. J. M. Seminario. Amsterdam: Elsevier, 1996.

  35. G. te Velde, F. M. Bickelhaupt, E. J. Baerends, et al. J. Comput. Chem., 2001, 22,931.

    Article  Google Scholar 

  36. G. Kresse and J. Furthmüller. Comput. Mater. Sci., 1996, 6,15.

    Article  CAS  Google Scholar 

  37. G. Kresse and J. Furthmüller. Phys. Rev. B, 1996, 54, 11169.

    Article  CAS  Google Scholar 

  38. P. Giannozzi, S. Baroni, N. Bonini, et al. J. Phys.: Condens. Matter, 2009, 21, 395502.

    Google Scholar 

  39. P. Giannozzi, O. Andreussi, T. Brumme, et al. J. Phys.: Condens. Matter, 2017, 29, 465901.

    CAS  Google Scholar 

  40. G. B. Sukharina, A. N. Kravtsova, A. V. Soldatov, et al. J. Phys.: Conf. Ser., 2009, 190, 012148.

    Google Scholar 

  41. M. A. Evsyukova, A. N. Kravtsova, I. N. Shcherbakov, et al. J. Struct. Chem., 2010, 51(6), 1075–1080.

    Article  CAS  Google Scholar 

  42. M. A. Bryleva, A. N. Kravtsova, I. N. Shcherbakov, et al. J. Struct. Chem., 2012, 53(2), 295–305.

    Article  CAS  Google Scholar 

  43. A. A. Guda, S. A. Guda, M. A. Soldatov, et al. J. Phys.: Conf. Ser., 2016, 712, 012004.

    Google Scholar 

  44. G. Smolentsev and V. Sundström. Coord. Chem. Rev., 2015, 304-305,117.

    Article  CAS  Google Scholar 

  45. G. Smolentsev, B. Cecconi, A. Guda, et al. Chem. -Eur. J., 2015, 21, 15158.

    Article  CAS  PubMed  Google Scholar 

  46. S. E. Canton, X. Zhang, Y. Liu, et al. Faraday Discuss., 2015, 185,51.

    Article  CAS  PubMed  Google Scholar 

  47. X. Zhang, S. E. Canton, G. Smolentsev, et al. J. Am. Chem. Soc., 2014, 136, 8804.

    Article  CAS  PubMed  Google Scholar 

  48. G. Smolentsev, A. Guda, X. Zhang, et al. J. Phys. Chem. C, 2013, 117, 17367.

    Article  CAS  Google Scholar 

  49. G. Smolentsev, A. Guda, M. Junousch, et al. Faraday Discuss., 2014, 171,259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. G. Smolentsev, S.E. Canton, J.V. Lockard et al. J. Electron Spectrosc. Relat. Phenom., 2011, 184,125.

    Article  CAS  Google Scholar 

  51. G. Smolentsev, A. V. Soldatov, and L. X. Chen. J. Phys. Chem. A, 2008, 112, 5363.

    Article  CAS  PubMed  Google Scholar 

  52. J. V. Lochard, S. Kabehie, J. I. Zink, et al. J. Phys. Chem. B, 2010, 114, 14521.

    Article  CAS  Google Scholar 

  53. https://www.xfel.eu/.

  54. K. Hämäläinen, D. P. Siddons, J. B. Hastings, and L. E. Berman. Phys. Rev. Lett., 1991, 67, 2850.

    Article  PubMed  Google Scholar 

  55. O. V. Safonova, M. Tromp, J. A. van Bokhoven, et al. J. Phys. Chem. B, 2006, 110, 16162.

    Article  CAS  PubMed  Google Scholar 

  56. M. Green. Semiconductor Quantum Dots: Organometallic and Inorganic Synthesis. RSC Nanoscience & Nanotechnology book, 2014.

    Google Scholar 

  57. I. N. Demchenko, M. Chernyshova, X. He, et al. J. Phys.: Conf. Ser., 2013, 430, 012030.

    Google Scholar 

  58. X. He, I. N. Demchenko, W. C. Stolte, et al. J. Phys. Chem. C, 2012, 116, 22001.

    Article  CAS  Google Scholar 

  59. I. N. Demchenko, M. Chernyshova, X. He, et al. X-Ray Spectrom, 2013, 42,197.

    Article  CAS  Google Scholar 

  60. L. Tröger, D. Arvanitis, K. Baberschke, et al. Phys. Rev. B, 1992, 46, 3283.

    Article  Google Scholar 

  61. Y. Zhang, O. Ersoy, A. Karatutlu, et al. J. Synchrotron Radiat., 2016, 23,253.

    Article  CAS  PubMed  Google Scholar 

  62. W. Little, A. Karatutlu, D. Bolmatov, et al. Sci. Rep., 2014, 4, 7372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. G. Dalba, P. Fornasini, R. Grisenti, et al. Appl. Phys. Lett., 1999, 74, 1454.

    Article  CAS  Google Scholar 

  64. I. A. Pankin, A. N. Kravtsova, O. E. Polozhentsev, et al. J. Struct. Chem., 2016, 57(7), 1369–1376.

    Article  CAS  Google Scholar 

  65. A. N. Kravtsova, I. A. Pankin, M. A. Soldatov, et al. J. Struct. Chem., 2016, 57(7), 1422–1428.

    Article  CAS  Google Scholar 

  66. A. N. Kravtsova, A. P. Budnik, I. A. Pankin, et al. J. Struct. Chem., 2017, 58(1), 45–52.

    Article  CAS  Google Scholar 

  67. D. C. Hannah, N. J. Dunn, S. Ithurria, et al. Phys. Rev. Lett., 2011, 107, 177403.

    Article  CAS  PubMed  Google Scholar 

  68. E. A. Weiss, R. C. Chiechi, S. M. Geyer, et al. J. Am. Chem. Soc., 2008, 130,74.

    Article  CAS  PubMed  Google Scholar 

  69. D. Katz, T. Wizansky, O. Millo, et al. Phys. Rev. Lett., 2002, 89, 086801.

    Article  CAS  PubMed  Google Scholar 

  70. M. E. Schmidt, S. A. Blanton, M. A. Hines, and P. Guyot-Sionnest. Phys. Rev. B, 1996, 53, 12629.

    Article  CAS  Google Scholar 

  71. A. L. Rogach, A. Kornowski, M. Gao, et al. J. Phys. Chem. B, 1999, 103, 3065.

    Article  CAS  Google Scholar 

  72. P. Reiss, M. Protière, and L. Li. Small, 2009, 5,154.

    Article  CAS  PubMed  Google Scholar 

  73. M. D. Regulacio and M.-Y. Han. Acc. Chem. Res., 2010, 43,621.

    Article  CAS  PubMed  Google Scholar 

  74. W. Zhang, G. Chen, and J. Wang. Inorg. Chem., 2009, 48, 9723.

    Article  CAS  PubMed  Google Scholar 

  75. J. van Embden, J. Jasieniak, and P. Mulvaney. J. Am. Chem. Soc., 2009, 131, 14299.

    Article  CAS  PubMed  Google Scholar 

  76. J. R. Dethlefsen and A. Døssing. Nano Lett., 2011, 11, 1964.

    Article  CAS  PubMed  Google Scholar 

  77. J. Hensel, G. Wang, Y. Li, and J. Z. Zhang. Nano Lett., 2010, 10,478.

    Article  CAS  PubMed  Google Scholar 

  78. J. Wang, I. Mora-Seró, Z. Pan, et al. J. Am. Chem. Soc., 2013, 135, 15913.

    Article  CAS  PubMed  Google Scholar 

  79. A. Salant, M. Shalom, I. Hod, et al. ACS Nano, 2010, 4, 5962.

    Article  CAS  PubMed  Google Scholar 

  80. L. Liu, J. Hensel, R. C. Fitzmorris, et al. J. Phys. Chem. Lett., 2010, 1,155.

    Article  CAS  Google Scholar 

  81. D. Litvinov, A. Rosenauer, D. Gerthsen, and N. N. Ledentsov. Phys. Rev. B, 2000, 61, 16819.

    Article  CAS  Google Scholar 

  82. M. A. van Huis, A. van Veen, H. Schut, et al. Nucl. Instrum. Methods Phys. Res., Sect. B, 2004, 218,410.

    Article  CAS  Google Scholar 

  83. H. Shin, D. Jang, Y. Jang, et al. J. Mater. Sci.: Mater. Electron, 2013, 24, 3744.

    CAS  Google Scholar 

  84. B. C. Fitzmorris, J. K. Cooper, J. Edberg, et al. J. Phys. Chem. C, 2012, 116, 25065.

    Article  CAS  Google Scholar 

  85. A. M. Kelley, Q. Dai, Z.-J. Jiang, et al. Chem. Phys., 2013, 422,272.

    Article  CAS  Google Scholar 

  86. H. Wei, J. Zhou, L. Zhang, et al. J. Nanomater, 2015, 2015, 764712.

    Google Scholar 

  87. L.-Y. Chen, C.-H. Chen, C.-H. Tseng, et al. Chem. Commun., 2011, 47, 1592.

    Article  CAS  Google Scholar 

  88. G. P. Huffman, F. E. Huggins, N. Shah, et al. J. Air Waste Manage. Assoc., 2000, 50, 1106.

    Article  CAS  Google Scholar 

  89. S. N. Sharma, H. Sharma, G. Singh, and S. M. Shivaprasad. Nucl. Instrum. Methods Phys. Res., Sect. B, 2006, 244,86.

    Article  CAS  Google Scholar 

  90. A. Sadoc. J. Phys. Colloq., 1986, 47, C8–1003.

    Google Scholar 

  91. M. Maurer. J. Phys. F: Met. Phys., 1986, 16, L223.

    Article  CAS  Google Scholar 

  92. A. Sadoc, J. P. Iite, A. Polian, et al. Philos. Mag. B, 1994, 70,855.

    Article  CAS  Google Scholar 

  93. A. Sadoc, J. P. Iite, A. Polian, et al. Phys. B, 1995, 208&209,495.

    Article  Google Scholar 

  94. S. Yin, Z. Xie, Q. Bian, et al. J. Alloys Compd., 2008, 455,314.

    Article  CAS  Google Scholar 

  95. S. Yin, Q. Bian, L. Qian, and A. Zhang. Mater. Sci. Eng., A, 2007, 465,95.

    Article  CAS  Google Scholar 

  96. O. E. Polozhentsev, M. A. Bryleva, A. N. Kravtsova, et al., Izv. RAN. Ser. fizicheskaya, 2015, 79, 1322.

    Google Scholar 

  97. M. A. Evsyukova, G. Yalovega, A. Balerna, et al. Phys. B, 2010, 405, 2122.

    Article  CAS  Google Scholar 

  98. J. Padeznik Gomilseka, I. Arconb, A. Kodreb, and J. Dolinsek. Solid State Commun., 2002, 123,527.

    Article  Google Scholar 

  99. A. P. Menushenkov and Ya. V. Rakshun. Crystallogr. Rep., 2007, 52, 1006.

    Article  CAS  Google Scholar 

  100. Ya. V. Rakchoun, A. P. Menushenkov, D. S. Chaitoura, et al. Nucl. Instrum. Methods Phys. Res., Sect. A, 2005, 543,208.

    Article  CAS  Google Scholar 

  101. A. P. Menushenkov, O. V. Kashurnikova, R. V. Chernikov, et al. Izv. RAN. Ser. fizicheskaya, 2008, 72, 1517.

    CAS  Google Scholar 

  102. B. Charrier, J. L. Hazemann, and D. Schmitt. J. Alloys Compd., 1998, 281,117.

    Article  CAS  Google Scholar 

  103. R. G. Hennig, K. F. Kelton, A. E. Carlsson, and C. L. Henley. Phys. Rev. B, 2003, 67, 134202.

    Article  CAS  Google Scholar 

  104. C. M. O'D. Alexander, A. P. Boss, and R. W. Carlson. Science, 2001, 293,64.

    Article  CAS  Google Scholar 

  105. G. J. Flynn, S. R. Sutton, S. Wirick, et al. 45th Lunar Planet. Sci., 2014 (1959).

    Google Scholar 

  106. H. G. Changela, J. C. Bridges, and S. J. Gurman. Geochim. Cosmochim. Acta, 2012, 98,282.

    Article  CAS  Google Scholar 

  107. K. Nagashima, A. N. Krot, and H. Yurimoto. Nature, 2004, 428,921.

    Article  CAS  PubMed  Google Scholar 

  108. G. J. Flynn, S. R. Sutton, B. Lai, et al. Meteorit. Planet. Sci., 2014, 49, 1626.

    Article  CAS  Google Scholar 

  109. F.-R. Orthous-Daunay, E. Quirico, L. Lemelle, et al. Earth Planet. Sci. Lett., 2010, 300,321.

    Article  CAS  Google Scholar 

  110. Y. Kebukawa, M. E. Zolensky, A. L. D. Kilcoyne, et al. Meteorit. Planet. Sci., 2014, 49, 2095.

    Article  CAS  Google Scholar 

  111. M. Bose, R. A. Root, and S. Pizzarello. Meteorit. Planet. Sci., 2017, 52,546.

    Article  CAS  Google Scholar 

  112. A. Garenne, P. Beck, G. Montes-Hernandez, et al. 45th Lunar Planet. Sci., 2014 (1941).

  113. P. Beck, V. De Andrade, F.-R. Orthous-Daunay, et al. Geochim. Cosmochim. Acta, 2012, 99,305.

    Article  CAS  Google Scholar 

  114. W. Satake, T. Mikouchi, and M. Miyamoto. 75th Annual Meeting of the Meteoritical Society, Australia, Cairns, 2012, (5230).

  115. A. Takenouchi and T. Mikouchi. 79th Annual Meeting of the Meteoritical Society, Germany, Berlin, 2016 (6135).

  116. W. Satake, P. C. Buchanan, T. Mikouchi, and M. Miyamoto. 43rd Lunar Planet. Sci., 2012 (1725).

  117. S. R. Sutton, C. A. Goodrich, and S. Wirick. Geochim. Cosmochim. Acta, 2017, 204, 313.

    Article  CAS  Google Scholar 

  118. S. Wirick, G. J. Flynn, S. R. Sutton, and M. E. Zolensky. 45th Lunar Planet. Sci., 2014 (1940).

    Google Scholar 

  119. S. B. Simon, S. R. Sutton, and L. Grossman. Geochim. Cosmochim. Acta, 2017, 189,377.

    Article  CAS  Google Scholar 

  120. P. W. Kubik, D. Elmore, N. J. Conard, et al. Nature, 1986, 319,568.

    Article  CAS  Google Scholar 

  121. S. J. McKibbin, T. R. Ireland, Y. Amelin, and P. Holden. Geochim. Cosmochim. Acta, 2015, 157,13.

    Article  CAS  Google Scholar 

  122. M. B. Madsen, S. Morup, T. V. V. Costa, et al. Nature, 1986, 321,501.

    Article  CAS  Google Scholar 

  123. M. L. Cerón Loayza and J. A. Bravo Cabrejos. Hyperfine Interact., 2011, 203,17.

    Article  CAS  Google Scholar 

  124. E. Dos Santos, J. Gattacceca, P. Rochette, et al. Phys. Earth Planet. Inter., 2015, 242,50.

    Article  CAS  Google Scholar 

  125. A. D. Al-Rawas, A. M. Gismelseed, A. F. Al-Kathiri, et al. Hyperfine Interact., 2008, 186,105.

    Article  CAS  Google Scholar 

  126. M. I. Oshtrakh, E. V. Petrova, V. I. Grokhovsky, and V. A. Semionkin. Hyperfine Interact., 2008, 186,61.

    Article  CAS  Google Scholar 

  127. K. Terada, K. Ninomiya, T. Osawa, et al. Sci. Rep., 2014, 4, 5072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. A. Takenouchi and T. Mikouchi. 47th Lunar Planet. Sci., 2016 (1755).

  129. A. H. Peslier, D. Hnatyshin, C. D. K. Herd, et al. Geochim. Cosmochim. Acta, 2010, 74, 4543.

    Article  CAS  Google Scholar 

  130. Y. Kebukawa, M. E. Zolensky, M. Freis, et al. 47th Lunar Planet. Sci., 2016 (1802).

  131. S. Wirick, G. J. Flynn, C. Jacobsen, and L. P. Keller. 37th Lunar Planet. Sci., 2006 (1418).

  132. H. Yabuta, S. Amari, J. Matsuda, et al. 41st Lunar Planet. Sci., 2010 (1202).

  133. A. J. King, P. F. Schofield, J. F. W. Mosselmans, and S. S. Russell. 77th Annual Meteoritical Society Meeting, Morocco, Casanlanca, 2014 (5251).

  134. A. Elmaleh, F. Bourdelle, A. Scholl, et al. Geochim. Cosmochim. Acta, 2015, 158,162.

    Article  CAS  Google Scholar 

  135. P. F. Schofield, A. D. Smith, A. Scholl, et al. Coord. Chem. Rev., 2014, 277/278,31.

    Article  CAS  Google Scholar 

  136. G. J. Flynn, S. R. Sutton, S. Wirick, et al. 43th Lunar Planet. Sci., 2012 (1089).

  137. G. J. Flynn, P. Northrup, and S. Wirick. 46th Lunar Planet. Sci., 2015 (1260).

  138. W. Satake, P. C. Buchanan, T. Mikouchi, and M. Miyamoto. 42nd Lunar Planet. Sci., 2011 (1608).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Kravtsova.

Additional information

Original Russian Text © 2018 A. N. Kravtsova, L. V. Guda, O. E. Polozhentsev, I. A. Pankin, A. V. Soldatov.

Translated from Zhurnal Strukturnoi Khimii, Vol. 59, No. 7, pp. 1749–1765, September- October, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kravtsova, A.N., Guda, L.V., Polozhentsev, O.E. et al. Xanes Specroscopic Diagnostics of the 3D Local Atomic Structure of Nanostructured Materials. J Struct Chem 59, 1691–1706 (2018). https://doi.org/10.1134/S0022476618070259

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476618070259

Keywords

Navigation