Skip to main content
Log in

Oxidation of Water to Molecular Oxygen by One-Electron Oxidants on Transition Metal Hydroxides

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

Surveyed in this review are the most important achievements in the research and development of catalysts based on Mn, Fe, Co, and Cu hydroxides for the oxidation of water to molecular oxygen by chemical oxidizing agents obtained, for the most part, at Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences. An analysis of the results of kinetic studies on water oxidation in the presence of the above-menthioned catalysts together with data obtained by quantum chemistry methods allowed us to make a conclusion on the general nature and process mechanism both in the presence of artificial catalytic systems based on metal hydroxides and the natural enzyme photosystem II of green plants. The most important properties of hydroxo compounds responsible for catalytic activity in the oxidation of water by one-electron oxidants are discussed, and a possible reaction mechanism is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Larkum, A.W.D., Curr. Opin. Biotec., 2010 vol. 21, p.271.

    Article  CAS  Google Scholar 

  2. BP Statistical Review of World Energy, 2016.

  3. Kunin, E.V., Logika sluchaya. O prirode i proiskhozhdenii biologicheskoi evolyutsii (The logic of the case. On the nature and origin of biological evolution), Moscow: Tsentrpoligraf, 2014.

    Google Scholar 

  4. Rappaport, F., Guergova-Kuras, M., Nixon, P.J., Diner, B.A., and Lavergne, J., Biochemistry, 2002, vol. 41, p. 8518.

    Article  CAS  PubMed  Google Scholar 

  5. Umena, Y., Kawakami, K., Shen, J.-R., and Kamiya, N., Nature, 2011, vol. 473, p.55.

    Article  CAS  Google Scholar 

  6. Kok, B., Forbush, B., and McGloin, M., Photochem. Photobiol., 1970, vol. 11, p.457.

    Article  CAS  PubMed  Google Scholar 

  7. Suga, M., Akita, F., Sugahara, M., Kubo, M., Nakajima, Y., Nakane, T., Yamashita, K., Umena, Y., Nakabayashi, M., Yamane, T., Nakano, T., Suzuki, M., Masuda, T., Inoue, S., Kimura, T., Nomura, T., Yonekura, S., Yu, L.-J., Sakamoto, T., Motomura, T., Chen, J.-H., Kato, Y., Noguchi, T., Tono, K., Joti, Y., Kameshima, T., Hatsui, T., Nango, E., Tanaka, R., Naitow, H., Matsuura, Y., Yamashita, A., Yamamoto, M., Nureki, O., Yabashi, M., Ishikawa, T., Iwata, S., and Shen, J.-R., Nature, 2017, vol. 543, p.131.

    Article  CAS  PubMed  Google Scholar 

  8. Elizarova, G.L. and Parmon, V.N., Fotokataliticheskoe preobrazovanie solnechnoi energii (Photocatalytic transformation of sun energy), part 2, Novosibirsk: Nauka, 1985.

    Google Scholar 

  9. Mills, A., Chem. Soc. Rev., 1989, vol. 18, p.285.

    Article  CAS  Google Scholar 

  10. Ruttinger, W. and Dismukes, C.G., Chem. Rev., 1997, vol. 97, no. 1, p.1.

    Article  PubMed  Google Scholar 

  11. Liu, X. and Wang, F., Coord. Chem. Rev., 2012, vol. 256, nos 11–12, p. 1115.

    Article  CAS  Google Scholar 

  12. Yamazaki, H., Shouji, A., Kajita, M., and Yagi, M., Coord. Chem. Rev., 2010, vol. 254, nos. 21–22, p. 2483.

    Article  CAS  Google Scholar 

  13. Liu, X., Inagaki, S., and Gong, J., Angew. Chem. Int. Ed. Engl., 2016, vol. 55, p. 14924.

    Article  CAS  PubMed  Google Scholar 

  14. Collin, J.P. and Sauvage, J.P., Inorg. Chem., 1986, vol. 25, p.135.

    Article  CAS  Google Scholar 

  15. Hunter, B.M., Gray, H.B., and Muller, A.M., Chem. Rev., 2016, vol. 116, p. 14120.

    Article  CAS  PubMed  Google Scholar 

  16. Najafpour, M.M., Ghobadi, M.Z., Haghighi, B., Tomo, T., Shen, J.R., and Allakhverdiev, S.I., BBA–Bioenergetics, 2015, vol. 1847, no. Iss. 2, p.294.

    Article  CAS  Google Scholar 

  17. Zhou, H., Yan, R., Zhang, D., and Fan, T., Chem.-Eur. J., 2016, vol. 22, p.1.

    Article  Google Scholar 

  18. Yamamoto, M. and Tanaka, K., ChemPlusChem, 2016, vol. 81, p.1.

    Article  CAS  Google Scholar 

  19. Sartorel, A., Carraro, M., Scorrano, G., Zorzi, R.D., Geremia, S., McDaniel, N.D., Bernhard, S., and Bonchio, M., J. Am. Chem. Soc., 2008, vol. 130, no. 15, p. 5006.

    Article  CAS  PubMed  Google Scholar 

  20. Elizarova, G.L., Matvienko, L.G., Lozhkina, N.V., Maizlish, V.E., and Parmon, V.N., React. Kinet. Catal. Lett., 1981, vol. 16, nos. 2–3, p.285.

    Article  CAS  Google Scholar 

  21. Elizarova, G.L., Matvienko, L.G., Lozhkina, N.V., Parmon, V.N., and Zamaraev, K.I., React. Kinet. Catal. Lett., 1981, vol. 16, nos. 2-3, p.191.

    Article  CAS  Google Scholar 

  22. Elizarova, G.L., Zhidomirov, G.M., and Parmon, V.N., Catal. Today, 2000, vol. 58, no. 2, p.71.

    Article  CAS  Google Scholar 

  23. Parmon, V.N., Elizarova, G.L., Matvienko, L.G., Lozhkina, N.V., and Maizlish, V.E., Izv. Akad. Nauk SSSR, Ser. Khim., 1984, vol. 8, p. 1735.

    Google Scholar 

  24. Elizarova, G.L., Matvienko, L.G., Parmon, V.N., and Zamaraev, K.I., Dokl. Akad. Nauk SSSR, 1979, vol. 249, no. 4, p.863.

    CAS  Google Scholar 

  25. Zoski, C.G., Handbook of Electrochemistry, Boston: Elsevier, 2007.

    Google Scholar 

  26. Aiso, K., Takeuchi, R., Masaki, T., Chandra, D., Saito, K., Yui, T., and Yagi, M., ChemSusChem, 2017, vol. 10, p.687.

    Article  CAS  PubMed  Google Scholar 

  27. Friebel, D., Louie, M.W., Bajdich, M., Sanwald, K.E., Cai, Y., Wise, A.M., Cheng, M.-J., Sokaras, D., Weng, T.-C., Alonso-Mori, R., Davis, R.C., Bargar, J.R., Norskov, J.K., Nilsson, A., and Bell, A.T., J. Am. Chem. Soc., 2015, vol. 137, p. 1305.

    Article  CAS  PubMed  Google Scholar 

  28. Singh, A., Fekete, M., Gengenbach, T., Simonov, A.N., Hocking, R.K., Chang, S.L.Y., Rothmann, M., Powar, S., Fu, D., Hu, Z., Wu, Q., Cheng, Y.-B., Bach, U., and Spiccia, L., ChemSusChem, 2015, vol. 8, p. 4266.

    Article  CAS  PubMed  Google Scholar 

  29. Singh Gujral, S., Simonov, A.N., Fang, X.-Y., Higashi, M., Gengenbach, T., Abe, R., and Spiccia, L., Catal. Sci. Technol., 2016, vol. 6, no. 11, p. 3745.

    Article  CAS  Google Scholar 

  30. Elizarova, G.L., Matvienko, L.G., Lozhkina, N.V., Parmon, V.N., and Moroz, E.M., Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim., 1990, vol. 3, p.86.

    Google Scholar 

  31. Elizarova, G.L., Matvienko, L.G., and Parmon, V.N., J. Mol. Catal., 1987, vol. 43, p.171.

    Article  CAS  Google Scholar 

  32. Elizarova, G.L., Matvienko, L.G., Taran, O.P., Parmon, V.N., and Kolomiichuk, V.N., Kinet. Katal., 1992, vol. 33, no. 4, p.898.

    CAS  Google Scholar 

  33. Young, I.D., Ibrahim, M., Chatterjee, R., Gul, S., Fuller, F.D., Koroidov, S., Brewster, A.S., Tran, R., Alonso-Mori, R., Kroll, T., Michels-Clark, T., Laksmono, H., Sierra, R.G., Stan, C.A., Hussein, R., Zhang, M., Douthit, L., Kubin, M., Lichtenberg, C., Pham, L.V., Nilsson, H., Cheah, M.H., Shevela, D., Saracini, C., and Bean, M.A., Nature, 2016, vol. 540, p.453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Elizarova, G.L., Matvienko, L.G., Pestunova, O.P., and Parmon, V.N., Kinet. Katal., 1994, vol. 35, no. 3, p.362.

    CAS  Google Scholar 

  35. Elizarova, G.L., Matvienko, L.G., Kuznetsov, V.L., Kochubey, D.I., and Parmon, V.N., J. Mol. Catal. A. Chem., 1995, vol. 103, p.43.

    Article  CAS  Google Scholar 

  36. Elizarova, G.L., Zhidomirov, G.M., and Parmon, V.N., Catal. Today, 2000, vol. 58, p.71.

    Article  CAS  Google Scholar 

  37. Chikunov, A.S., Taran, O.P., and Parmon, V.N., Proc. 21 Int. Conf. on Photochemical Conversation and Storage of Solar Energy, St. Peterburg: SPBU, 2016, p.54.

    Google Scholar 

  38. Elizarova, G.L., Gerasimov, O.V., Matvienko, L.G., Lozhkina, N.V., and Parmon, V.N., Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim., 1990, vol. 3, p.94.

    Google Scholar 

  39. Pestunova, O.P., Elizarova, G.L., Gerasimov, O.V., and Parmon, V.N., Kinet. Katal., 2000, vol. 41, no. 3, p.375.

    Article  Google Scholar 

  40. Khannanov, N.K., Khramov, A.V., Moravskii, A.P., and Shafirovich, V.Ya., Kinet. Katal., 1983, vol. 24, no. 4, p.858.

    CAS  Google Scholar 

  41. Pendlebury, S.R., Barroso, M., Cowan, A.J., Sivula, K., Tang, J., Gratzel, M., Klug, D., and Durrant, J.R., Chem. Commun., 2011, vol. 47, no. 2, p.716.

    Article  CAS  Google Scholar 

  42. Barroso, M., Pendlebury, S.R., Cowan, A.J., and Durrant, J.R., Chem. Sci., 2013, vol. 4, no. 7, p. 2724.

    Article  CAS  Google Scholar 

  43. Young, K.M.H., Klahr, B.M., Zandi, O., and Hamann, T.W., Catal. Sci. Technol., 2013, vol. 3, no. 7, p. 1660.

    Article  CAS  Google Scholar 

  44. Cristensen, P.A., Harriman, A., Porter, G., and Neta, P., J. Chem. Soc. Faraday Trans. II, 1984, vol. 80, p. 1451.

    Article  Google Scholar 

  45. Gerasimov, O.V., Lymar, S.V., and Parmon, V.N., J. Photochem. Photobiol. A. Chem., 1991, vol. 56, p.275.

    Article  CAS  Google Scholar 

  46. Gerasimov, O.V., Lymar, S.V., Tsvetkov, T.M., and Parmon, V.N., React. Kinet. Catal. Lett., 1987, vol. 36, p.145.

    Article  Google Scholar 

  47. Li, X. and Siegbahn, P.E.M., J. Am. Chem. Soc., 2013, vol. 135, p. 13804.

    Article  CAS  PubMed  Google Scholar 

  48. Kok, B., Forbush, B., and Mcgloin, M., Photochem. Photobiol., 1970, vol. 11, no. 6, p.457.

    Article  CAS  PubMed  Google Scholar 

  49. Filatov, M.J., Elizarova, G.L., Gerasimov, O.V., Zhidomirov, G.M., and Parmon, V.N., J. Mol. Catal., 1994, vol. 91, p.71.

    Article  CAS  Google Scholar 

  50. Wang, L.-P. and Van Voorhis, T., J. Phys. Chem. Lett. Am. Chem. Soc., 2011, vol. 2, no. 17, p. 2200.

    CAS  Google Scholar 

  51. Mavros, M.G., Tsuchimochi, T., Kowalchuk, T., Mclsaac, A., Wang, L.-P., and Voorhis, T.V., Inorg. Chem. Am. Chem. Soc., 2014, vol. 53, no. 13, p. 6386.

    Article  CAS  Google Scholar 

  52. Shubin, A.A., Ruzankin, S.P., Zilberberg, I.L., and Parmon, V.N., Chem. Phys. Lett., 2015, vol. 640, p.94.

    Article  CAS  Google Scholar 

  53. Zilberberg, I.L., Shubin, A.A., Ruzankin, S.P., Kovalskii, V.Y., Ovchinnikov, D.A., and Parmon, V.N., AIP Conf. Proc., 2016, p. 20027.

    Google Scholar 

  54. Shubin, A.A., Ruzankin, S.P., Zilberberg, I.L., Taran, O.P., and Parmon, V.N., Chem. Phys. Lett., 2015, vol. 619, p.126.

    Article  CAS  Google Scholar 

  55. Liao, R.-Z. and Siegbahn, P.E.M., J. Photochem. Photobiol., 2015, vol. 152, p.162.

    Article  CAS  Google Scholar 

  56. Dietl, N., Schlangen, M., and Schwarz, H., Angew. Chem. Int. Ed. Engl., 2012, vol. 51, p. 5544.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. P. Taran.

Additional information

Original Russian Text © A.S. Chikunov, O.P. Taran, A.A. Shubin, I.L. Zilberberg, V.N. Parmon, 2018, published in Kinetika i Kataliz, 2018, Vol. 59, No. 1, pp. 29–56.

This paper is based on materials presented at the X International Conference “Mechanisms of Catalytic Reactions” (October 2–6, 2016, Svetlogorsk).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chikunov, A.S., Taran, O.P., Shubin, A.A. et al. Oxidation of Water to Molecular Oxygen by One-Electron Oxidants on Transition Metal Hydroxides. Kinet Catal 59, 23–47 (2018). https://doi.org/10.1134/S0023158418010032

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158418010032

Keywords

Navigation