Skip to main content
Log in

Halomonas chromatireducens sp. nov., a new denitrifying facultatively haloalkaliphilic bacterium from solonchak soil capable of aerobic chromate reduction

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

A heterotrophic bacterial strain AGD 8-3 capable of denitrification under extreme haloalkaline conditions was isolated from soda solonchak soils of the Kulunda steppe (Russia). The strain was classified within the genus Halomonas. According to the results of 16S rRNA gene sequencing, Halomonas axialensis, H. meridiana, and H. aquamarina are most closely related to strain AGD 8-3 (96.6% similarity). Similar to other members of the genus, the strain can grow within a wide range of salinity and pH. The strain was found to be capable of aerobic reduction of chromate and selenite on mineral media at 160 g/l salinity and pH 9.5–10. The relatively low level of phylogenetic similarity and the phenotypic characteristics supported classification of strain AGD 8-3 as a new species Halomonas chromatireducens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zavarzin, G.A., Zhilina, T.N., and Kevbrin, V.V., The Alkaliphilic Microbial Community and Its Functional Diversity, Mikrobiologiya, 1999, vol. 68, no. 5, pp. 579–599 [Microbiology (Engl. Transl.), vol. 68, no. 5, pp. 503–521].

    Google Scholar 

  2. Ventosa, A., Nieto, J.J., and Oren, A., Biology of Moderately Halophilic Aerobic Bacteria, Microbiol. Mol. Biol. Rev., 1998, vol. 62, no. 2, pp. 504–544.

    PubMed  CAS  Google Scholar 

  3. Quesada, E., Ventosa, A., Rodrguez-Valera, F., Megas, L., and Ramos-Cormenzana, A., Numerical Taxonomy of Moderately Halophilic Gram-Negative Bacteria from Hypersaline Soils, J. Gen. Microbiol., 1983, no. 129, pp. 2649–2657.

  4. Arahal, D.R. and Ventosa, A., The Family Halomonadaceae, in The Prokaryotes, Starr M.P., Stolp H., Truper H.G., Ballows H., Shlegel H.G, Eds., Berlin: Springer, 2006, vol. 6, ch. 3.3.28, pp. 811–835.

    Chapter  Google Scholar 

  5. Duckworth, A.W., Grant, W.D., Jones, B.E., Meijer, D., Márquez, M.C., and Ventosa, A., Halomonas magadii sp. nov., a New Member of the Genus Halomonas, Isolated from a Soda Lake of the East African Rift Valley, Extremophiles, 2000, no. 4, pp. 53–60.

  6. Arahal, D.R., Ludwig, W., Schleifer, K.H., and Ventosa, A., Phylogeny of the Family Halomonadaceae Based on 23S and 16S rDNA Sequence Analyses, Int. J. Syst. Evol. Microbiol., 2002, no. 52, pp. 241–249.

  7. Boltyanskaya, Yu.V., Haloalkaliphilic Denitrifying Bacteria of the Genus Halomonas from Soda Lakes, in Trudy Instituta mikrobiologii im. S.N. Vinogradskogo. 2007. Vyp. 14. Alkalofil’nye mikrobnye soobshchestva (Proc. Winogradsky Inst. Microbiol., vol. 12. Alkaliphilic Microbial Communities), Moscow: Nauka, pp. 276–299.

  8. Mata, J.A., Martinez-Canovas, J., Quesada, E., and Bejar, V., A Detailed Phenotypic Characterisation of the Type Strains of Halomonas Species, Syst. Appl. Microbiol., 2002, no. 25, pp. 360–375.

  9. Shapovalova, A.A., Khijniak, T.V., Tourova, T.P., Muyzer, G., and Sorokin, D.Y., Heterotrophic Denitrification at Extremely High Salt and pH by Haloalkaliphilic Gammaproteobacteria from Hypersaline Soda Lakes, Extremophiles, 2008, vol. 12.

  10. Barak, Y., Ackerley, D.F., Dodge, C.J., Banwari, L., Alex, C., Francis, A.J., and Matin, A., Analysis of Novel Soluble Chromate and Uranyl Reductases and Generation of an Improved Enzyme by Directed Evolution, Appl. Environ. Microbiol., 2006, vol. 72, no. 11, pp. 7074–7082.

    Article  PubMed  CAS  Google Scholar 

  11. Cervantes, C., Campos-Garcia, J., Devars, S., Gutierrez-Corona, F., Loza-Tavera, H., Torres-Guzman, J.C., and Moreno-Sanchez, R., Interactions of Chromium with Microorganisms and Plants, FEMS Microbiol. Rev., 2001, no. 25, pp. 335–347.

  12. Lloyd, J.R., Microbial Reduction of Metals and Radionuclides, FEMS Microbiol. Rev., 2003, no. 27, pp. 411–425.

  13. Wang, Y.T., Shen, H., Bacterial Reduction of Hexavalent Chromium, J. Ind. Microbiol., 1995, no. 14, pp. 159–163.

  14. Chen, J.M. and Hao, O.J., Microbial Chromium(VI) Reduction, Criti. Rev. Environ. Sci. Technol., 1998, vol. 28, no. 3, pp. 219–251.

    Article  Google Scholar 

  15. Nies, D.H., Microbial Heavy-Metal Resistance, Appl. Microbiol. Biotechnol., 1999, vol. 51, no. 6, pp. 730–750.

    Article  PubMed  CAS  Google Scholar 

  16. Shen, H. and Wang, Y.T., Hexavalent Chromium Removal in Two Stage Bioreactor System, J. Environ. Eng., 1995, no. 121, pp. 798–803.

  17. Stewart, D.I. and Burke, L.T., R. Mortimer J.G. Stimulation of Microbially Mediated Chromate Reduction in Alkaline Soil-Water Systems, J. Geomicrobiol, 2007, no. 24, pp. 655–669.

  18. Geelhoed, J.S., Meeussen, J.C.L., Hillier, S., Lumsdon, D.G., Thomas, R.P., Farmer, J.G., and Paterson, E., Identification and Geochemical Modeling of Processes Controlling Leaching of Cr(VI) and Other Major Elements from Chromite Ore Processing Residue, Geochim. Cosmochimi. Acta, 2002, vol. 66, no. 22, pp. 3927–3942.

    Article  CAS  Google Scholar 

  19. Pfennig, N. and Lippert, K.D., Uber Das Vitamin B12-Bidürfnis Phototropher Schwefelbacterien, Arch. Microbiol., 1966, no. 55, pp. 245–256.

  20. Reynolds, E.S., The Use of Lead Citrate at High pH as an Electron Opaque Stain in Electron Microscopy, J. Cell Biol., 1963, vol. 17, pp. 208–318.

    Article  PubMed  CAS  Google Scholar 

  21. Sandell, E.B., Colorimetric Determination of Traces of Metals, New York: Interscience, 1959 [Russ. Transl. Moscow: Mir, 1964].

    Google Scholar 

  22. Marmur, J., A Procedure for the Isolation of Deoxyribonucleic Acid from Microorganisms, J. Mol. Biol., 1961, no. 3, pp. 208–318.

  23. Marmur, J. and Doty, P., Determination of the Base Composition of Deoxyribonucleic Acid from Microorganisms, J. Mol. Biol., 1962, no. 5, pp. 109–118.

  24. Tsaplina, I.A., Osipov, G.A., Bogdanova, T.I., Nedorezova, T.P., and Karavaiko, G.I., Fatty Acid Composition of the Lipids of Thermoacidophilic Bacteria of the Genus Sulfobacillus, Mikrobiologiya, 1994, vol. 63, no. 5, pp. 821–830.

    CAS  Google Scholar 

  25. Banciu, H., Sorokin, D.Yu., Galinski, E.A., Muyzer, G., Kleerebezem, R., and Kuenen, J.G., Thioalkalivibrio halophilus sp. nov., a Novel Obligately Chemolithoautotrophic Facultatively Alkaliphilic and Extremely Salt-Tolerant Sulfur-Oxidizing Bacterium from a Hypersaline Alkaline Lake, Extremophiles, 2004, vol. 8, pp. 325–334.

    PubMed  CAS  Google Scholar 

  26. Banciu, H.L., Sorokin, D.Yu., Tourova, T.P., Galinski, E.A., Muntyan, M.S., Kuenen, J.G., and Muyzer, G., Influence of Salts and pH on Growth and Activity of a Novel Facultatively Alkaliphilic, Extremely Salt-Tolerant, Obligately Chemolithoautotrophic Sufur-Oxidizing Gammaproteobacterium Thioalkalibacter halophilus gen. nov., sp. nov. from South-Western Siberian Soda Lakes, Extremophiles, 2008, vol. 12.

  27. Garrels, R.M. and Christ, Ch.L., Solutions, Minerals and Equilibria, New York: Harper and Row, 1965 [Russ. Transl. Moscow: Mir, 1968.

    Google Scholar 

  28. Kaye, J.Z., Marquez, M.C., Ventosa, A., and Baross, J.A., Halomonas neptunia sp. nov., Halomonas sulfidaeris sp. nov., Halomonas axialensis sp. nov. and Halomonas hydrothermalis sp. nov.: Halophilic Bacteria Isolated from Deep-Sea Hydrothermal vent Environments, Int. J. Syst. Evol. Microbiol., 2004, no. 54, pp. 499–511.

  29. James, S.R., Dobson, S.J., Franzmann, P.D., and McMeekin, T.A., Halomonas meridiana, a New Species of Extremely Halotolerant Bacteria Isolated from Antarctic Saline Lakes, Syst. Appl. Microbiol., 1990, no. 13, pp. 270–278.

  30. Berendes, F., Gottschalk, G., Heine-Dobbernack, E., Moore, E.R.B., and Tindall, B.J., Halomonas desiderata sp. nov., a New Alkaliphilic, Halotolerant and Denitrifying Bacterium Isolated from a Municipal Sewage Works, Syst. Appl. Microbiol., 1996, no. 19, pp. 158–167.

  31. Mormile, M.R., Romine, M.F., Garcia, M.T., Ventosa, A., Bailey, T.J., and Peyton, B.M., Halomonas campisalis sp. nov., a Denitrifying, Moderately Haloalkaliphilic Bacterium, Syst. Appl. Microbiol., 1999, no. 22, pp. 551–558.

  32. Romano, I., Giordano, A., Lama, L., Nicolaus, B., and Gambacorta, A., Halomonas campaniensis sp. nov., a Haloalkaliphilic Bacterium Isolated from a Mineral Pool of Campania Region, Italy, Syst. Appl. Microbiol., 2005, vol. 28, no. 7, pp. 610–618.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Khijniak.

Additional information

Original Russian Text © A.A. Shapovalova, T.V. Khijniak, T.P. Tourova, D.Yu. Sorokin, 2009, published in Mikrobiologiya, 2009, Vol. 78, No. 1, pp. 117–127.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shapovalova, A.A., Khijniak, T.V., Tourova, T.P. et al. Halomonas chromatireducens sp. nov., a new denitrifying facultatively haloalkaliphilic bacterium from solonchak soil capable of aerobic chromate reduction. Microbiology 78, 102–111 (2009). https://doi.org/10.1134/S0026261709010135

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261709010135

Key words

Navigation