Skip to main content
Log in

Chaotic Artificial Bee Colony algorithm: A new approach to the problem of minimization of energy of the 3D protein structure

  • Bioinformatics
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Prediction of the three-dimensional structure of a protein from its amino acid sequence can be considered as a global optimization problem. In this paper, the Chaotic Artificial Bee Colony (CABC) algorithm was introduced and applied to 3D protein structure prediction. Based on the 3D off-lattice AB model, the CABC algorithm combines global search and local search of the Artificial Bee Colony (ABC) algorithm with the chaotic search algorithm to avoid the problem of premature convergence and easily trapping the local optimum solution. The experiments carried out with the popular Fibonacci sequences demonstrate that the proposed algorithm provides an effective and high-performance method for protein structure prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Koehl P. 2010. Protein structure prediction. Biomed. Appl. Biophys. 3, 1–34.

    Article  Google Scholar 

  2. Lopes H.S. 2008. Evolutionary algorithms for the protein folding problem: A review and current trends. in Computational Intelligence in Biomedicine and Bioinformatics, vol. 151, pp. 297–315.

    Article  Google Scholar 

  3. Anfinsen C.B. 1973. Principles that govern the folding of protein chains. Science. 181, 223–227.

    Article  PubMed  CAS  Google Scholar 

  4. Liwo A., Lee J., Ripoll D.R., Pillardy J., Scheraga H.A. 1999. Protein structure prediction by global optimization of a potential energy function. Proc. Natl. Acad. Sci. U. S. A. 96, 5482–5485.

    Article  PubMed  CAS  Google Scholar 

  5. Gabriel P.H.R., Melo V.V., Delbem A.C.B. 2012. Evolutionary algorithms and HP model for protein structure prediction. SBA: Controle & Automação. 23, 25–37

    Google Scholar 

  6. Khimasia M.M., Coveney P.V. 1997. Protein structure prediction as a hard optimization problem: The genetic algorithm approach. Mol. Simulat. 19, 205–226.

    Article  CAS  Google Scholar 

  7. Chen B., Johnson M. 2009. Protein local 3D structure prediction by Super Granule Support Vector Machines (Super GSVM). BMC Bioinform. 10(Suppl. 11), S15.

    Article  Google Scholar 

  8. Chen X., Lv M.W., Zhao L.H., Zhang X.D. 2011. An improved particle swarm optimization for protein folding prediction. Int. J. Inform. Eng. Electron. Bus. 3, 1–8.

    Article  CAS  Google Scholar 

  9. Dorn M., Buriol L.S., Lamb L.C. 2011. A hybrid genetic algorithm for the 3-D protein structure prediction problem using a path-relinking strategy. Evolutionary Computation (CEC), 2011 IEEE Congress, New Orleans, La., June 5–8, pp. 2709–2716.

    Chapter  Google Scholar 

  10. Islam M., Chetty M., Murshed M. 2011. Novel local improvement techniques in clustered memetic algorithm for protein structure prediction. Evolutionary Computation (CEC), 2011 IEEE Congress, New Orleans, La., June 5–8, pp. 1003–1011.

    Chapter  Google Scholar 

  11. Kim S.Y., Lee S.B., Lee J. 2005. Structure optimization by conformational space annealing in an off-lattice protein model. Phys. Rev. E. 72, 011916.

    Article  Google Scholar 

  12. Liu J.F., Huang W.Q. 2007. Quasi-physical algorithm of an off-lattice model for protein folding problem. J. Comp. Sci. Technol. 22, 569–574.

    Article  Google Scholar 

  13. Marks D.S., Colwell L.J., Sheridan R., et al. 2011. 3D protein structure predicted from sequence. Arxiv preprint arXiv: 1110.5091.

    Google Scholar 

  14. Novosád T., SnaÌsel V., Abraham A., Yang J.Y. 2010. Searching protein 3-D structures for optimal structure alignment using intelligent algorithms and data structures. Inf. Technol. Biomed., IEEE Trans. 14, 1378–1386.

    Article  Google Scholar 

  15. Perdomo-Ortiz A., Dickson N., Drew-Brook M., Rose G., Aspuru-Guzik A. 2012. Finding low-energy conformations of lattice protein models by quantum annealing. Arxiv Preprint arXiv:1204. 5485.

    Google Scholar 

  16. Pérez-Hernández L.G., Rodriguez-Vázquez K., Garduño-Juárez R. 2009. Parallel particle swarm optimization applied to the protein folding problem. GECCO’ 09: Proc. of 11th Annu. Conf. on Genetic and Evolutionary Computation. N.Y.: ACM New York, pp. 1791–1792.

    Chapter  Google Scholar 

  17. Zhang X.L., Lin X.L. 2010. Effective 3D protein structure prediction with local adjustment genetic-annealing algorithm. Interdiscipl. Sci.: Comput. Life Sci. 2, 256–262.

    Article  CAS  Google Scholar 

  18. Zhang X.L., Lin X.L., Wan C.P., Li T.T. 2007. Geneticannealing algorithm for 3D off-lattice protein folding model. In: Emerging Technologies in Knowledge Discovery and Data Mining, vol. 4819, pp. 186–193.

    Article  Google Scholar 

  19. Zhang X., Cheng W. 2008. Protein 3D structure prediction by improved tabu search in off-lattice AB model. ICBBE 2008: The 2nd Int. Conf. on Bioinformatics and Biomedical Engineering, Shanghai, pp. 184–187.

    Chapter  Google Scholar 

  20. Wang T., Zhang X. 2011. A case study of 3D protein structure prediction with genetic algorithm and Tabu search. Wuhan Univ. J. Nat. Sci. 16, 125–129.

    Article  Google Scholar 

  21. Zhang X.L., Wang T., Luo H.P., Yang J.Y., Deng Y.P., et al. 2010. 3D protein structure prediction with genetic tabu search algorithm. BMC Syst. Biol. 4(Suppl. 1), S6.

    Article  PubMed  Google Scholar 

  22. Zhang Y.D., Wu L. 2012. Artificial bee colony for two dimensional protein folding. Adv. Electr. Eng. Syst. 1, 19–23.

    Google Scholar 

  23. Stillinger F.H., Head-Gordon T., Hirshfeld C.L. 1993. Toy model for protein folding. Phys. Rev. E. 48, 1469–1477.

    Article  CAS  Google Scholar 

  24. Stillinger F.H., Head-Gordon T. 1995. Collective aspects of protein folding illustrated by a toy model. Phys. Rev. E. 52, 2872–2877.

    Article  CAS  Google Scholar 

  25. Huang W., Liu J. 2006. Structure optimization in a three-dimensional off-lattice protein model. Biopolymers. 82, 93–98.

    Article  PubMed  CAS  Google Scholar 

  26. Zhang X.L., Cheng W. 2009. Protein 3D structure prediction based on improved tabu search. Comput. Eng. 35, 31–34.

    Google Scholar 

  27. Karaboga D., Basturk B. 2007. Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems. Found. Fuzzy Logic Soft Comput. 4529, 789–798.

    Article  Google Scholar 

  28. Fei C.G., Han Z.Z. 2006. Improved chaotic optimization algorithm. Control Theory Appl. 23, 471–474.

    Google Scholar 

  29. Wu X., Guan Z.H. 2007. A novel digital watermark algorithm based on chaotic maps. Phys. Lett. A. 365, 403–406.

    Article  CAS  Google Scholar 

  30. Blickle T., Thiele L. 1995. A mathematical analysis of tournament selection. Proc. of Sixth Int. Conf. on Genetic Algorithms, San Francisco: Morgan Kaufman, pp. 9–16.

    Google Scholar 

  31. Kolendo P., Jaworski B., Mierzchalski R. 2011. Comparison of selection schemes in evolutionary method of path planning. In: Computational Collective Intelligence: Technologies and Applications, vol. 6923, pp. 241–250.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. D. Guo.

Additional information

Published in Russian in Molekulyarnaya Biologiya, 2013, Vol. 47, No. 6, pp. 1020–1027.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Guo, G.D. & Chen, L.F. Chaotic Artificial Bee Colony algorithm: A new approach to the problem of minimization of energy of the 3D protein structure. Mol Biol 47, 894–900 (2013). https://doi.org/10.1134/S0026893313060162

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893313060162

Keywords

Navigation