Skip to main content
Log in

Symmetric informationally complete measurements of arbitrary rank

  • Structure of Quantum States
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

There has been much interest in so-called SIC-POVMs, i.e., rank 1 symmetric informationally complete positive operator valued measures. In this paper we discuss the larger class of POVMs that are symmetric and informationally complete, but not necessarily rank 1. This class of POVMs is of some independent interest. In particular it includes a POVM that is closely related to the discrete Wigner function. However, it is interesting mainly because of the light it casts on the problem of constructing rank 1, symmetric, informationally complete POVMs. In this connection we derive an extremal condition alternative to the one derived by Renes et al.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. M. Renes, R. Blume-Kohout, A. J. Scott, and C. M. Caves, J. Math. Phys. 45, 2171 (2004); quant-ph/0310075.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. C. A. Fuchs, Quantum Information and Computation 4, 467 (2004); quant-ph/0404122.

    MathSciNet  Google Scholar 

  3. W. K. Wootters, quant-ph/0406032.

  4. I. Bengtsson, quant-ph/0406174.

  5. M. Grassl, in Proc. ERATO Conf. on Quantum Information Sci. 2004 (Tokyo, 2004); quant-ph/0406175.

  6. I. Bengtsson and A. Ericsson, Open Sys. and Information Dyn. 12, 187 (2005); quant-ph/0410120.

    MathSciNet  Google Scholar 

  7. D. M. Appleby, J. Math. Phys. 46, 052107 (2005); quant-ph/0412001.

    Google Scholar 

  8. M. Grassl, Electronic Notes in Discrete Mathematics 20, 151 (2005).

    Article  MathSciNet  Google Scholar 

  9. A. Klappenecker and M. Rötteler, quant-ph/0502031.

  10. A. Klappenecker, M. Rötteler, I. Shparlinski, and A. Winterhof; quant-ph/0503239.

  11. A. J. Scott, quant-ph/0604049.

  12. S. T. Flammia, quant-ph/0605050.

  13. I. H. Kim, quant-ph/0608024.

  14. E. Prugovečki, Int. J. Theor. Phys. 16, 321 (1977).

    Article  Google Scholar 

  15. F. E. Schroeck, Int. J. Theor. Phys. 28, 247 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  16. P. Busch, Int. J. Theor. Phys. 30, 121 (1991).

    Article  MathSciNet  Google Scholar 

  17. P. Busch, M. Grabowski, and P. J. Lahti, Operational Quantum Physics (Springer, Lecture Notes in Physics m31, 1995).

  18. C. M. Caves, C. A. Fuchs, and R. Schack, J. Math. Phys. 43, 4537 (2002); quant-ph/0104088.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. C. A. Fuchs, quant-ph/0205039.

  20. G. M. d’Ariano, P. Perinotti, and M. F. Sacchi, J. Opt. B. 6, S487 (2004); quant-ph/0310013.

    Google Scholar 

  21. S. G. Hoggar, Geom. Dedic. 69, 287 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  22. G. Zauner, Ph. D. Thesis, University of Vienna, 1999; http://www.mat.univie.ac.at/:_neum/papers/physpapers.html.

  23. J. E. Harriman, Phys. Rev. A 17, 1249 (1978).

    Article  ADS  Google Scholar 

  24. G. Mahler and V. A. Weberruss, Quantum Networks: Dynamics of Open Nanostructures (Springer, Berlin, 1995).

    Google Scholar 

  25. L. Jakóbczyk and M. Siennicki, Phys. Lett. A 286, 383 (2001).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. G. Kimura, Phys. Lett. A 314, 339 (2003); quant-ph/0301152.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. M. S. Byrd and N. Khaneja, Phys. Rev. A 68, 062322 (2003); quant-ph/0302024.

  28. S. G. Schirmer, T. Zhang, and J. V. Leahy, J. Phys. A 37, 1389 (2004); quant-ph/0308004.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. G. Kimura and A. Kossakowski, Open Sys. Information Dyn. 12, 207 (2005); quant-ph/0408014.

    Article  MATH  MathSciNet  Google Scholar 

  30. K. Dietz, quant-ph/0601013.

  31. I. D. Ivanović, J. Phys. A 14, 3241 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  32. W. K. Wootters, Ann. Phys. (N.Y.) 176, 1 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  33. W. K. Wootters and B. D. Fields, Ann. Phys. (N.Y.) 191, 363 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  34. S. Bandyopadhyay, P. O. Boykin, V. Roychowdhury, and F. Vatan; quant-ph/0103162.

  35. A. O. Pittenger and M. H. Rubin, Linear Alg. Appl. 390, 255 (2004); quant-ph/0308142.

    Article  MATH  MathSciNet  Google Scholar 

  36. A. Klappenecker and M. Rötteler, quant-ph/0309120.

  37. C. Archer, quant-ph/0312204.

  38. T. Durt, quant-ph/0401046.

  39. K. S. Gibbons, M. J. Hoffman, and W. K. Wootters, Phys. Rev. A 70, 062101 (2004); quant-ph/0401155.

    Google Scholar 

  40. M. Saniga, M. Planat, and H. Rosu, J. Opt. B. 6, L19 (2004); math-ph/0403057.

    MathSciNet  Google Scholar 

  41. D. M. Appleby, to appear.

  42. C. Miquel, J. P. Paz, and M. Saraceno, Phys. Rev. A 65, 062309 (2002); quant-ph/0204149.

  43. S. Chaturvedi, E. Ercolessi, G. Marmo, et al., Pramana 65, 981 (2006); quant-ph/0507094.

    ADS  Google Scholar 

  44. D. Gross, quant-ph/0602001.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Appleby.

Additional information

The text was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Appleby, D.M. Symmetric informationally complete measurements of arbitrary rank. Opt. Spectrosc. 103, 416–428 (2007). https://doi.org/10.1134/S0030400X07090111

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X07090111

PACS numbers

Navigation