Skip to main content
Log in

Photoinduced relaxation processes in complexes based on semiconductor CdSe nanocrystals and organic molecules

  • Condensed-Matter Spectroscopy
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Possible pathways and mechanisms of photoinduced relaxation processes in CdSe and CdSe/ZnS nanocrystals that are surface-passivated (as a result of two-point interactions) by nitrogen-containing ligands of different nature (pyridyl-substituted porphyrin molecules and their derivatives, 2,2′-dipyridyl, and 1,10-phenanthroline) are studied in toluene at 295 K by the methods of steady-state and time-resolved spectroscopy. In nanocrystal-organic ligand composites, a high luminescence-quenching efficiency of nanocrystals by molecules of tetrapyrrole compounds compared to 2,2′-dipyridyl, 1,10-shenanthroline, and pyridine can be associated with the electronic properties of a π conjugated macrocycle and anchor groups. The fundamental role that mesomeric effects and the partial overlap of HOMOs and LUMOs of porphyrin and meso-pyridyl rings play in the enhancement of nonradiative recombination of charges in a surface interface layer is substantiated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Hu, L. Li, W. Yang, et al., Science 292, 2060 (2001).

    Article  Google Scholar 

  2. Nanoparticles: From Theory to Applications, Ed. by G. Schmid (Willey, Weinheim, 2004).

    Google Scholar 

  3. S. V. Gaponenko, Optical Properties of Semiconductor Nanocrystals (Cambridge Univ. Press, Cambridge, 1998).

    Google Scholar 

  4. B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, et al., J. Phys. Chem. B 101(46), 9463 (1997).

    Article  Google Scholar 

  5. H. Imahori, J. Phys. Chem. B 108(20), 6130 (2004).

    Article  Google Scholar 

  6. E. I. Zenkevich and C. von Borczyskowski, in Handbook of Polyelectrolytes and Their Applications, Ed. by S. K. Tripathy, J. Kumar, and H. S. Nalwa (American Scientific Publishers, 2002), Vol. 2,Chap. 11, pp. 301–348.

  7. G. S. Kottas, L. I. Clarke, D. Horinek, and J. Michl, Chem. Rev. 105(4), 1281 (2005).

    Article  Google Scholar 

  8. A. R. Clapp, I. L. Medintz, J. M. Mauro, et al., Amer. Chem. Soc 126, 301 (2004).

    Article  Google Scholar 

  9. O. Schmeltz, A. Mews, T. Basche, et al., Langmuir 17, 2861 (2001).

    Article  Google Scholar 

  10. S. Pelet, J.-E. Moser, and M. J. Gratzel, Phys. Chem. B 104, 1791 (2000).

    Article  Google Scholar 

  11. A. Hagfeldt and M. J. Gratzel, Acc. Chem. Res. 33, 269 (2000).

    Article  Google Scholar 

  12. D. J. Norris, M. G. Bawendi, and L. E. Brus, Molecular Electronics, Ed. by J. Jortner and M. Ratner (Blackwell Science, Cambridge, 2002).

    Google Scholar 

  13. S.-Y. Ding, M. Jones, M. P. Tucker, et al., Nano Lett. 3, 1581 (2003).

    Article  ADS  Google Scholar 

  14. S. Coe-Sullivan, W.-K. Woo, J. S. Steckel, et al., Organic Electronics 4, 123 (2003).

    Article  Google Scholar 

  15. D. M. Willard, T. Mutschler, M. Yu, et al., Annal. Bioanal. Chem. 384, 564 (2006).

    Article  Google Scholar 

  16. E. Zenkevich, F. Cichos, A. Shulga, et al., J. Phys. Chem. B 109, 8679 (2005).

    Article  Google Scholar 

  17. V. G. Maslov, A. O. Orlova, and A. V. Baranov, in Book of Abstracts of International Symposium on Molecular Photonics (St. Petersburg, Russia, 2006), pp. 97–98.

    Google Scholar 

  18. W. W. Yu, L. Qu, W. Gao, and X. Peng, Chem. Mater. 15, 2854 (2003).

    Article  Google Scholar 

  19. J. E. Bowen-Katari, V. L. Colvin, and A. P. Alivisatos, J. Phys. Chem. 98, 4109 (1994).

    Article  Google Scholar 

  20. F. R. Longo, J. D. Finarelli, and J. B. Kim, J. Heterocycl. Chem. 6, 927 (1969).

    Article  Google Scholar 

  21. R. G. Little, J. A. Anton, P. A. Loach, and J. A. Ibers, J. Heterocycl. Chem. 12, 343 (1975).

    Google Scholar 

  22. S. Sugata, S. Yamanouchi, and Y. Matsushima, Chem. Farm. Bull. 25, 884 (1977).

    Google Scholar 

  23. S. Bachilo, A. Willert, U. Rempel, et al., J. Photochem. Photobiol. A 126, 99 (1999).

    Article  Google Scholar 

  24. É. I. Zen’kevich, E. I. Sagun, V. N. Knyukshto, et al., Zh. Prikl. Spektrosk. 63(4), 599 (1996).

    Google Scholar 

  25. C. Landes, C. Burda, M. Braun, and M. A. El-Sayed, J. Phys. Chem. B 105(15), 2981 (2001).

    Article  Google Scholar 

  26. E. P. Petrov and F. C. Cichos, J. Lumin. 119–120, 412 (2006).

    Article  Google Scholar 

  27. A. Javier, C. S. Yun, J. Sorena, and G. F. Strouse, J. Phys. Chem. B 107, 435 (2003).

    Article  Google Scholar 

  28. M. J. Gratzel, Pure Appl. Chem. 33(3), 459 (2001).

    Article  Google Scholar 

  29. V. G. Maĭranovskiĭ, in Porphyrins: Spectroscopy, Electrochemistry, and Applications, Ed. by N. S. Enikolopyan (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  30. G. J. Kavarnos and N. J. Turro, Chem. Rev. 86, 401 (1986).

    Article  Google Scholar 

  31. D. Gust and T. A. Moore, in The Porphyrin Handbook, Ed. by K. M. Kadish, K. M. Smith, and R. Guilard (Academic, New York, 2000), Vol. 8, Chap. 57, pp. 153–190.

    Google Scholar 

  32. V. I. Klimov, D. W. McBranch, C. A. Letherdale, and M. G. Bawendi, Phys. Rev. B 60(19), 13740 (1999).

    Google Scholar 

  33. N. Armaroll, L. De Cola, V. Balzani, et al., J. Chem. Soc., Faraday Trans. 88(4), 553 (1992).

    Article  Google Scholar 

  34. V. I. Klimov, J. Phys. Chem. B 104(26), 6112 (2000).

    Article  Google Scholar 

  35. P. Guyot-Sionnest, M. Shim, C. Matranga, and M. Hines, Phys. Rev. B 60, 2181 (1999).

    Article  ADS  Google Scholar 

  36. M. Gao, S. Kirstein, H. Moehwald, et al., J. Phys. Chem. B 102, 8360 (1998).

    Article  Google Scholar 

  37. C. Landes, M. Braun, and M. A. El-Sayed, J. Phys. Chem. B 105(43), 10554 (2001).

    Google Scholar 

  38. A. P. Alivisatos, J. Phys. Chem. 100, 13226 (1996).

    Google Scholar 

  39. General Chemistry in Formulas, Definitions, and Schemes, Ed. by V. F. Tikavyĭ (Izd. Universitetskoe, Minsk, 1987) [in Russian].

    Google Scholar 

  40. A. I. Ekimov, F. Hache, M. C. Schanne-Klein, et al., J. Opt. Soc. Am. B 10(1), 100 (1993).

    ADS  Google Scholar 

  41. Al. L. Efros, M. Rosen, M. Kuno, et al., Phys. Rev. B 54(7), 4843 (1996).

    Article  ADS  Google Scholar 

  42. S. A. Empedocles, D. J. Norris, and M. G. Bawendi, Phys. Rev. Lett. 77, 3873 (1996).

    Article  ADS  Google Scholar 

  43. S. A. Empedocles, R. Neuhauser, K. Shimizu, and M. G. Bawendi, Characterization of Nanophase Materials, Ed. by. Z. L. Wang (Wiley, Weinheim, 1999).

    Google Scholar 

  44. E. Zenkevich, T. Blaudeck, A. Shulga, et al., J. Lumin. 122–123, 784 (2007).

    Article  Google Scholar 

  45. A. El Firdoussi, M. Esseffar, W. Bouab, et al., J. Phys. Chem. A 108(47), 10568 (2004).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © É.I. Zen’kevich, E.I. Sagun, A.A. Yarovoi, A.M. Shul’ga, V.N. Knyukshto, A.P. Stupak, C. von Borczyskowski, 2007, published in Optika i Spektroskopiya, 2007, Vol. 103, No. 6, pp. 998–1009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zen’kevich, É.I., Sagun, E.I., Yarovoi, A.A. et al. Photoinduced relaxation processes in complexes based on semiconductor CdSe nanocrystals and organic molecules. Opt. Spectrosc. 103, 958–968 (2007). https://doi.org/10.1134/S0030400X0712020X

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X0712020X

PACS numbers

Navigation