Skip to main content
Log in

Collective plasmon resonances in monolayers of metal nanoparticles and nanoshells

  • Physical Optics
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The collective plasmon resonances in a monolayer formed by metal or metal-dielectric nanoparticles with dipole or quadrupole single-particle resonances are theoretically and experimentally studied. The extinction, scattering, and absorption spectra are calculated using an exact many-particle solution for the system of interacting particles. With increasing surface density of particles in the monolayer, the dipole resonance is suppressed, and the spectrum of the collective system is determined by the quadrupole plasmon only. It is shown that the selective suppression of the long-wavelength extinction band is caused by the collective suppression of the dipole scattering mode, whereas the short-wavelength absorption spectrum of the monolayer differs little from the single-particle spectrum. Using dark-field light and atomic force microscopy, the kinetics of self-assembling of nanoshells is studied. It is shown that the universal linear relation between the relative shift of the wavelength of the collective quadrupole resonance and the relative increment of the refractive index of the surrounding medium is implemented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. A. Stuart, A. J. Haes, C. R. Yonzon, et al., IEEE Volume of Nanobitechnology 152, 13 (2005).

    Article  Google Scholar 

  2. C. R. Yonzon, X. Zhang, J. Zhao, and R. P. Van Duyne, Spectroscopy 22, 42 (2007).

    Google Scholar 

  3. R. Baron, B. Willner, and I. Willner, Chem. Commun., 323 (2007).

  4. C. Loo, L. Hirsch, M. Lee, et al., Opt. Lett. 30, 1012(2005).

    Article  ADS  Google Scholar 

  5. I. H. El-Sayed, X. Huang, and M. A. El-Sayed, Nano Lett. 5, 829 (2005).

    Article  ADS  Google Scholar 

  6. G. F. Paciotti, D. G. I. Kingston, and L. Tamarkin, Drug Development Research 67, 47 (2006).

    Article  Google Scholar 

  7. H. M. E. Azzazy, M. M. H. Mansour, and S. C. Kazmierczak, Clin. Chem. 52, 1238 (2006).

    Article  Google Scholar 

  8. X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, J. Am. Chem. Soc. 128, 2115 (2006).

    Article  Google Scholar 

  9. P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, Nano Today 2, 18 (2007).

    Article  Google Scholar 

  10. D. Pissuwan, S. M. Valenzuela, and M. B. Cortie, Trends Biotechnol. 24, 62 (2006).

    Article  Google Scholar 

  11. A. Wei, in Nanoparticles: Building Blocks for Nanotechnology (Kluwer/Plenum Publ, New York, 2004), Chap. 5, pp. 173–200.

    Google Scholar 

  12. K.-S. Lee and M. A. El-Sayed, J. Phys. Chem. B 109,20331 (2005).

    Article  Google Scholar 

  13. B. N. Khlebtsov, V. P. Zharov, A. G. Melnikov, et al., Nanotecnology 17, 5167 (2006).

    Article  ADS  Google Scholar 

  14. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, J. Phys. Chem. B 110, 7238 (2006).

    Article  Google Scholar 

  15. N. G. Khlebtsov, A. G. Melnikov, V. A. Bogatyrev, and L. A. Dykman, in Photopolarimetry in Remote Sensing, Ed. by G. Videen, Ya. S. Yatskiv, and M. I. Mishchenko, (Kluwer, Dordrecht, 2004), pp. 265–308.

    Google Scholar 

  16. A. Wei, e-J. Surf. Sci. Nanotec. 4, 9 (2006).

    Article  Google Scholar 

  17. X. M. Lin, H. M. Jaeger, C. M. Sorensen, and K. J. Klabunde, J. Phys. Chem. B 105, 3353 (2001).

    Article  Google Scholar 

  18. C. L. Haynes and R. P. Van Duyne, J. Phys. Chem. B 105, 5599 (2001).

    Article  Google Scholar 

  19. M. Lahav, A. Vaskevich, and I. Rubinstein, Langmuir 20, 7365 (2004).

    Article  Google Scholar 

  20. T. Okamoto and I. Yamaguchi, Opt. Lett. 25, 372 (2000).

    Article  ADS  Google Scholar 

  21. N. Nath and A. Chilkoti, Anal. Chem. 74, 504 (2002).

    Article  Google Scholar 

  22. N. Nath and A. Chilkoti, Anal. Chem. 76, 5370 (2004).

    Article  Google Scholar 

  23. A. J. Haes and R. P. Van Duyne, J. Am. Chem. Soc. 124, 10596 (2002).

    Google Scholar 

  24. J. C. Riboh, A. J. Haes, A. D. McFarland, et al., J. Phys. Chem. B 107, 1772 (2003).

    Article  Google Scholar 

  25. F. Frederix, J. M. Friedt, K. H. Choi, et al., Anal. Chem. 75, 6890 (2003).

    Article  Google Scholar 

  26. S. Enoch, R. Quidant, and G. Badenes, Opt. Express 12, 3422 (2004).

    Article  ADS  Google Scholar 

  27. S. Malynych and G. Chumanov, J. Am. Chem. Soc. 125,2896 (2003).

    Article  Google Scholar 

  28. S. Malynych and G. Chumanov, J. Opt. A 8, 144 (2006).

    ADS  Google Scholar 

  29. M. C. Buncick, R. J. Warmack, and T. L. Ferrell, J. Opt. Soc. Am. B 4, 927 (1987).

    Article  ADS  Google Scholar 

  30. G. A. Niklasson, P. A. Bobbert, and H. G. Craighead, Nanostruct. Mater. 12, 725 (1999).

    Article  Google Scholar 

  31. B. Lamprecht, G. Schider, R. T. Lechner, et al., Phys. Rev. Lett. 84, 4721 (2000).

    Article  ADS  Google Scholar 

  32. V. Russier and M. P. Pileni, Appl. Surf. Sci. 162–163, 644 (2000).

    Article  Google Scholar 

  33. S. Linden, A. Christ, J. Kuhl, and H. Giessen, Appl. Phys. B 73, 311 (2001).

    Article  ADS  Google Scholar 

  34. G. B. Smith and V. N. Pustovit, Opt. Commun. 211, 197 (2002).

    Article  ADS  Google Scholar 

  35. S. M. Kachan and A. N. Ponyavina, J. Phys. Cond. Matter 14, 103 (2002).

    Article  ADS  Google Scholar 

  36. L. L. Zhao, K. L. Kelly, and G. C. Schatz, J. Phys. Chem. B 107, 7343 (2003).

    Article  Google Scholar 

  37. C. L. Haynes, A. D. McFarland, L. L. Zhao, et al., J. Phys. Chem. B 107, 7337 (2003).

    Article  Google Scholar 

  38. D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, Nano Lett. 4, 153 (2004).

    Article  ADS  Google Scholar 

  39. M. Francoeur, P. G. Venkata, and M. P. Mengüç, J. Quant. Spectr. Radat. Transfer 106, 44 (2007).

    Article  ADS  Google Scholar 

  40. S. Zou, N. Janel, and G. C. Schatz, J. Chem. Phys. 120, 10871 (2004).

    Article  ADS  Google Scholar 

  41. S. Zou and G. C. Schatz, J. Chem. Phys. 121, 12606 (2005).

    Article  ADS  Google Scholar 

  42. A. Bouhelier, R. Bachelot, J. S. Im, et al., J. Phys. Chem. B 109, 3195 (2005).

    Article  Google Scholar 

  43. S. Lal, S. L. Westcott, R. N. Taylor, et al., J. Phys. Chem. B 106, 5609 (2002).

    Article  Google Scholar 

  44. I. E. Tamm, The Priciples of Electricity Theory (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  45. N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, and A. G. Melnikov, J. Colloid. Interface Sci. 180, 436(1996).

    Article  Google Scholar 

  46. B. N. Khlebtsov and N. G. Khlebtsov, J. Quant. Spectr. Radiat. Transfer 106, 154 (2007).

    Article  ADS  Google Scholar 

  47. P. B. Johnson and R. W. Christy, Phys. Rev. B 12, 4370 (1972).

    Article  ADS  Google Scholar 

  48. B. N. Khlebtsov and N. G. Khlebtsov, J. Biomed. Opt. 11, 44002 (2006).

    Google Scholar 

  49. C. R. Bohren and D. R. Huffman Absorption and Scattering of Light by Small Particles (Wiley, New York 1983; Mir, Moscow, 1986).

    Google Scholar 

  50. Z. C. Wu and Y. P. Wang, Radio Sci. 26, 1393 (1991).

    Article  ADS  Google Scholar 

  51. Y.-L. Xu and N. G. Khlebtsov, J. Quant. Spectrosc. Radiat. Transfer 79–80, 1121 (2004).

    Google Scholar 

  52. H. Xu and M. Käll, Sens. Actuators 87, 244 (2002).

    Article  Google Scholar 

  53. B. N. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, and N. G. Khlebtsov, Opt. Spektrosk. 102(2), 273 (2007) [Opt. Spectrosc. 102 (2), 233 (2007)].

    Article  ADS  Google Scholar 

  54. A. G. Dong, Y. J. Wang, Y. Tang, et al., Chem. Commun., 350 (2002).

  55. C. Song, D. Wang, Y. Lin, et al., Nanotecnology 15, 962(2004).

    Article  ADS  Google Scholar 

  56. S. Weili, Y. Sahoo, M. T. Swihart, and P. N. Prasad, Langmuir 21, 1610 (2005).

    Article  Google Scholar 

  57. M. V. Berry and I. C. Percival, Opt. Acta 33, 577 (1986).

    ADS  Google Scholar 

  58. S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. Halas, Chem. Phys. Lett. 288, 243 (1998).

    Article  ADS  Google Scholar 

  59. W. Stöber, A. Fink, and J. Bohn, J. Colloid. Interface Sci. 26, 62 (1968).

    Article  Google Scholar 

  60. A. V. Alekseeva, V. A. Bogatyrev, B. N. Khlebtsov, et al., Kolloidn. Zh. 68(6), 725 (2006).

    Google Scholar 

  61. B. N. Khlebtsov, A. G. Melnikov, and N. G. Khlebtsov, J. Quant. Spectr. Radiat. Transfer 107(2), 306 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. N. Khlebtsov.

Additional information

Original Russian Text © B.N. Khlebtsov, V.A. Khanadeyev, N.G. Khlebtsov, 2008, published in Optika i Spektroskopiya, 2008, Vol. 104, No. 2, pp. 324–337.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khlebtsov, B.N., Khanadeyev, V.A. & Khlebtsov, N.G. Collective plasmon resonances in monolayers of metal nanoparticles and nanoshells. Opt. Spectrosc. 104, 282–294 (2008). https://doi.org/10.1134/S0030400X08020239

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X08020239

PACS numbers

Navigation