Skip to main content
Log in

Concentration quenching and migration of excitations in a bulk Cd0.5Mn0.5Te crystal

  • Condensed-Matter Spectroscopy
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The curves of intracenter luminescence decay for Mn2+ ions in the Cd0.5Mn0.5Te semiconductor solid solution, obtained in a low-temperature experiment, have been simulated by the Monte Carlo method. The features of the kinetics of the 2-eV band in the time interval where significant nonexponentiality of relaxation at different points of the emission band profile manifests itself, as well the integral kinetics and energy relaxation, have been considered. Migration of ion excitations and concentration quenching (which was previously disregarded) are considered to be the main mechanisms determining the kinetic curve formation. It was established that excitation by 2.34-eV photons leads to both selective (intracenter) and band excitation of Mn2+ ions. Comparison of the results of numerical simulation and experiment showed that the characteristic values of the migration and quenching rates (W m and W q , respectively) are close in magnitude and W q, m ≈ 0.1/τ, where τ is the lifetime at the long-wavelength band wing with the exponential kinetics. The estimated quantum yield (0.56) indicates significant influence of the concentration quenching on the 2-eV luminescence quantum yield in Cd1 − x Mn x Te and Zn1 − x Mn x S crystals with a high concentration of Mn2+ ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. F. Agekyan, Fiz. Tverd. Tela (St. Petersburg) 44(11), 1921 (2002) [Phys. Solid State 44, 2013 (2002)].

    Google Scholar 

  2. A. Mycielski, L. Kowalczyk, R. R. Galazka, et al., J. Alloys Compd. 423, 163 (2006).

    Article  Google Scholar 

  3. L. Kowalczyk, B. Koziarska-Glinka, Line Van Khoi, et al., Opt. Mater. 14, 161 (2000).

    Article  Google Scholar 

  4. V. F. Agekyan, N. N. Vasil’ev, and A. Yu. Serov, Fiz. Tverd. Tela (St. Petersburg) 41(1), 49 (1999) [Phys. Solid State 41, 41 (1999)].

    Google Scholar 

  5. N. N. Vasil’ev, Opt. Spektrosk. 102(3), 476 (2007) [Opt. Spectrosc. 102, 426 (2007)].

    Google Scholar 

  6. E. Muller, W. Gebhardt, and V. Gerhardt, Phys. Status Solidi 113(1), 209 (1982).

    Article  Google Scholar 

  7. J. D. Park, S. Yamamoto, J. Watanabe, et al., J. Phys. Soc. Jpn. 66(10), 3289 (1997).

    Article  ADS  Google Scholar 

  8. V. F. Agekyan, N. N. Vasil’ev, A. Yu. Serov, and N. G. Filosofov, Fiz. Tverd. Tela (St. Petersburg) 42(5), 816 (2000) [Phys. Solid State 42, 836 (2000)].

    Google Scholar 

  9. M. M. Moriwaki, W. M. Becker, W. Gebhardt, and R. R. Galazka, Phys. Rev. B: Condens. Matter Mater. Phys. 26(6), 3165 (1982).

    ADS  Google Scholar 

  10. T. T. Basiev, V. A. Malyshev, and A. K. Przhevuskiĭ, Tr. Inst. Obshch. Fiz. 46, 86 (1994).

    Google Scholar 

  11. V. F. Agekyan, N. N. Vasil’ev, A. Yu. Serov, et al., Fiz. Tverd. Tela (St. Petersburg) 47(11), 2074 (2005) [Phys. Solid State 47, 2162 (2005)].

    Google Scholar 

  12. V. F. Agekyan, I. Akai, N. G. Filosofov, et al., in Proceedings of the 14th International Symposium “Nanostructures: Physics and Technology,” St. Petersburg, 2006, p. 202.

  13. D. L. Dexter, J. Chem. Phys. 21(5), 836 (1953).

    Article  ADS  Google Scholar 

  14. T. T. Basiev and Yu. V. Orlovskiĭ, Tr. Inst. Obshch. Fiz. 46, 65 (1994).

    Google Scholar 

  15. A. I. Burshteĭn, Zh. Éksp. Teor. Fiz. 84(6), 2001 (1983) [Sov. Phys. JETP 57, 1165 (1983)].

    Google Scholar 

  16. O. Goede and W. Heimbrodt, Phys. Status Solidi 146, 11 (1988).

    Article  Google Scholar 

  17. W. Busse, H.-E. Gumlich, M. Krause, et al., J. Lumin. 31–32, 421 (1984).

    Article  Google Scholar 

  18. T. Mivakawa and D. L. Dexter, Phys. Rev. B: Solid State 1(7), 2961 (1970).

    ADS  Google Scholar 

  19. G. Rebman, C. Rigaux, G. Bastard, et al., Phys. B 117/118, 452 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Vasil’ev.

Additional information

Original Russian Text © N.N. Vasil’ev, 2008, published in Optika i Spektroskopiya, 2008, Vol. 105, No. 2, pp. 274–280.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasil’ev, N.N. Concentration quenching and migration of excitations in a bulk Cd0.5Mn0.5Te crystal. Opt. Spectrosc. 105, 251–256 (2008). https://doi.org/10.1134/S0030400X08080134

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X08080134

PACS numbers

Navigation