Skip to main content
Log in

Nonlinear optical characterization of the Ag nanoparticles doped in polyvinyl alcohol films

  • Nonlinear and Quantum Optics
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The effect of silver nanoparticles doped in polyvinyl alcohol (PVA) on the nonlinear optical properties of composite films is studied experimentally. Samples are PVA films of 0.14 mm thickness doped with different concentrations of silver nanoparticles. Nonlinear optical properties of doped polymer films are studied experimentally employing Z-scan techniques. Experiments are performed using the second harmonic of a continuous Nd-Yag laser beam at 532 nm wavelength and 45 mW power. The effect of nonlinear refractive index of samples is obtained by measuring the profile of propagated beam through the samples and their nonlinear refractive index is found to be negative. The nonlinear absorption coefficient is calculated using open aperture Z-scan data while its nonlinear refractive index is measured using the closed aperture Z-scan data, leads to measuring the third order susceptibility |χ(3)|. Real and imaginary parts of the third-order nonlinear optical susceptibility |χ(3)| are decrease with increasing the concentration of Ag nanoparticles in the films. The values of thermo-optic coefficient are determined at different concentrations of silver nanoparticles for samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Porel, N. Venkatram, D. Narayana Rao, and T. P. Radhakrishnan, J. Nanosci. Nanotechnol. 7, 1887 (2007).

    Article  Google Scholar 

  2. J. C. Garcia-Martinez, R. Lenzutekong, and R. M. Crooks, J. Am. Chem. Soc. 127, 5097 (2005).

    Article  Google Scholar 

  3. R. Morones, J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramirez, and M. J. Yacaman, Nanotechnology 16, 2346 (2005).

    Article  ADS  Google Scholar 

  4. W. Sun, Q. Dai, J. G. Worden, and Q. Huo, J. Phys. Chem. B 109, 20854 (2005).

    Article  Google Scholar 

  5. Y. Deng, P. Wang, Y. Y. Sun, H. Ming, Q. J. Zhang, Y. Jiao, and X. Q. Sun, IEEE 36, 373 (2006).

    Google Scholar 

  6. R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, IEEE Quant. Electron. 32, 1324 (1996).

    Article  ADS  Google Scholar 

  7. E. Shahriari, W. M. Mat Yunus, and E. Saion, Braz. J. Phys. 40, 256 (2010).

    Article  ADS  Google Scholar 

  8. L. L. Beecroft and C. K. Ober, Chem. Mater. 9, 1302 (1997).

    Article  Google Scholar 

  9. Y. Dirix, C. Bastiaansen, W. Caseri, and P. Smith, Adv. Mater. 11, 223 (1999).

    Article  Google Scholar 

  10. C. Loo, A. Lin, L. Hirsch, M. Lee, J. Barton, N. Halas, J. West, and R. Drezek, Technol. Cancer. Res. T 3, 33 (2004).

    Article  Google Scholar 

  11. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martn-Moreno, F. J. Garca-Vidal, and T. W. Ebbesen, Science 297, 820 (2002).

    Article  ADS  Google Scholar 

  12. L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, Proc. Acad. Sci. (USA) 100, 13549 (2003).

    Article  ADS  Google Scholar 

  13. W. Cun-Xiu, F. Shi-Shu, and G. Yu-Zong, J. Chin. Phys. Lett. 26, 097804 (2009).

    Article  ADS  Google Scholar 

  14. E. W. Van Stryland and M. Sheik-Bahae, in Characterization Techniques and Tabulations for Organic Nonlinear Materials, Ed. by M. G. Kuzyk and C. W. Dirk (1998), pp. 655–692.

  15. A. Nimorodh Ananth and S. Umapathy, Appl. Nanosci. 1, 87 (2011).

    Article  ADS  Google Scholar 

  16. C. Uma Devi, A. K. Sharma, and V. V. R. N. Rao, Mater. Lett. 56, 167 (2002).

    Article  Google Scholar 

  17. A. K. Zvezdin and N. F. Kubrakov, JETP 89, 77 (1999).

    Article  ADS  Google Scholar 

  18. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, IEEE J. 26 (1990).

  19. M. Sheik-Bahae and M. P. Hasselbeck, Handbook Opt. 4, 1 (2000).

    Google Scholar 

  20. S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, Chem. Phys. Lett. 369, 318 (2003).

    Article  ADS  Google Scholar 

  21. P. Poornesh, P. K. Hegde, G. Umesh, M. G. Manjunatha, K. B. Manjunatha, and A. V. Adhikari, Opt. Las. Technol. 42, 230 (2010).

    Article  ADS  Google Scholar 

  22. R. W. Hellwarth, Progr. Quant. Electron. 5, 1 (1979).

    Article  ADS  Google Scholar 

  23. M. Abdelaziz, Physica B 406, 1300 (2011).

    Article  ADS  Google Scholar 

  24. H. Aleali et al. Jap. J. Appl. Phys. 49, 085002 (2010).

    Article  ADS  Google Scholar 

  25. H. Li, Zh. Chen, J. Li, H. Zhan, W. Zhang, Ch. Huang, Ch. Ma, and B. Zhao, J. Sol. St. Chem. 179, 1415 (2006).

    Article  ADS  Google Scholar 

  26. Z. Mao, L. Qiao, F. He, Y. Liao, C. Wang, and Y. Cheng, Chin. Opt. 7, 949 (2009).

    Article  Google Scholar 

  27. H. Aleali et al., Jap. J. Appl. Phys. 49, 085002 (2010).

    Article  ADS  Google Scholar 

  28. M. Rashidi-Huyeh and B. Palpant, Phys. Rev. B 74, 075405 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davoud Dorranian.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghanipour, M., Dorranian, D. Nonlinear optical characterization of the Ag nanoparticles doped in polyvinyl alcohol films. Opt. Spectrosc. 118, 949–954 (2015). https://doi.org/10.1134/S0030400X15060132

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X15060132

Keywords

Navigation