Skip to main content
Log in

Specific features of luminescence quenching in a nematic liquid crystal doped with nanoparticles

  • Condensed-Matter Spectroscopy
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The change in the intensity of the photoluminescence (PL) spectra of nematic liquid crystal (NLC) composites as a function of the concentration of CdSe/ZnS semiconductor quantum dots (QDs) and TiO2 and ZrO2 nanoparticles ~5 nm in diameter has been investigated. It is shown that the PL-quenching intensity in composites with CdSe/ZnS QDs exceeds that in composites with TiO2 and ZrO2 nanoparticles. The lowfrequency spectra of these composites with a concentration of 0.1 wt %, recorded in the range of 102–103 Hz, and the content of mobile ions in them have been investigated. It is found that the dielectric loss in the composite with CdSe/ZnS QDs is much higher and the content of mobile ions is larger by a factor of 3 than in the composites with TiO2 and ZrO2 nanoparticles. It is shown that an increase in the CdSe/ZnS QD concentration in NLC composites leads to an increase in the dielectric loss and a decrease in the PL intensity. Possible mechanisms of the interaction between NLC molecules and CdSe/ZnS QDs are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Kinkead and T. Hegmann, J. Mater. Chem. 20, 448 (2010).

    Article  Google Scholar 

  2. J. Mirzaei, M. Urbanski, K. Yu, H.-S. Kitzerow, and T. Hegmann, J. Mater. Chem. 21, 12710 (2011).

    Article  Google Scholar 

  3. E. A. Konshina, I. F. Galin, D. P. Shcherbinin, and E. O. Gavrish, Liq. Cryst. 41, 1229 (2014).

    Article  Google Scholar 

  4. T. Joshi, P. Ganguly, D. Haranath, S. Singh, and A. M. Biradar, Mater. Lett. 114, 156 (2014).

    Article  Google Scholar 

  5. A. Kumar, J. Prakash, A. D. Deshmukh, D. Haranath, P. Silotia, and A. M. Biradar, Appl. Phys. Lett. 100, 134101 (2012).

    Article  ADS  Google Scholar 

  6. J. S. Roy, T. P. Majumder, and R. J. Dabrowski, Mol. Struct. 1098, 351 (2015).

    Article  ADS  Google Scholar 

  7. M. A. Kurochkina, D. P. Shcherbinin, and E. A. Konshina, Opt. Spectrosc. 119, 812 (2015).

    Article  ADS  Google Scholar 

  8. O. Xu, Y. Zhang, B. Bo Tang, and C.-Y. Zhang, Anal. Chem. 88, 2051 (2016).

    Article  Google Scholar 

  9. A. K. Visheratina, I. V. Alisova, E. V. Kundelev, A. O. Orlova, V. G. Maslov, A. V. Fedorov, and A. V. Baranov, Opt. Spectrosc. 119, 733 (2015).

    Article  ADS  Google Scholar 

  10. K. I. Annas, Ya. A. Gromova, A. O. Orlova, V. G. Maslov, A. V. Fedorov, and A. V. Baranov, J. Opt. Technol. 81, 439 (2014).

    Article  Google Scholar 

  11. V. V. Danilov, A. S. Panfutova, V. B. Shilov, I. M. Belousova, G. M. Ermolaeva, A. I. Khrebtov, and D. A. Videnichev, Russ. J. Phys. Chem. B 9, 561 (2015).

    Article  Google Scholar 

  12. S. Dayneko, P. Linkov, I. Martynov, A. Tameev, M. Tedoradze, P. Samokhvalov, I. Nabiev, and A. Chistyakov, Phys. E: Low-Dim. Syst. Nanostruct. 79, 206 (2016).

    Article  ADS  Google Scholar 

  13. K. Zhao, Z. Pan, and X. Zhong, J. Phys. Chem. Lett. 7, 406 (2016).

    Article  Google Scholar 

  14. T. Förster, Ann. Phys. (N.Y.) 437, 55 (1948).

    Article  ADS  Google Scholar 

  15. S. Yu. Kruchinin, A. V. Fedorov, A. V. Baranov, T. S. Perova, and K. Berwick, Phys. Rev. B 78, 125311 (2008).

    Article  ADS  Google Scholar 

  16. C. Curutchet, A. Franceschetti, and D. Scholes, J. Phys. Chem. C 112, 13336 (2008).

    Article  Google Scholar 

  17. A. A. Vashchenko, V. S. Lebedev, A. G. Vitukhnovskii, R. B. Vasiliev, and I. G. Samatov, JETP Lett. 96, 113 (2012).

    Article  ADS  Google Scholar 

  18. V. M. Agranovich, Yu. N. Gartstein, and M. Litinskaya, Chem. Rev. 111, 5179 (2011).

    Article  Google Scholar 

  19. D. P. Shcherbinin, E. A. Konshina, and D. E. Solodkov, Tech. Phys. Lett. 41, 781 (2015).

    Article  ADS  Google Scholar 

  20. M. A. Kurochkina and E. A. Konshina, Opt. Spectrosc. 118, 111 (2015).

    Article  ADS  Google Scholar 

  21. M. A. Kurachkina, D. P. Shcherbinin, and E. A. Konshina, Proc. SPIE–Int. Soc. Opt. Eng. 9519, 95190Z-3 (2015).

  22. V. E. Adrianov, A. O. Orlova, V. G. Maslov, A. V. Baranov, and A. V. Fedorov, NTV SPbGU ITMO 5, 30 (2009).

    Google Scholar 

  23. D. P. Shcherbinin, E. A. Konshina, and M. A. Kurochkina, NTV ITMO 15, 849 (2015).

    Google Scholar 

  24. E. A. Konshina, D. P. Shcherbinin, E. O. Gavrish, I. F. Galin, and M. A. Kurochkina, Zhidk. Krist. Prakt. Ispol’z. 15, 64 (2015).

    Google Scholar 

  25. N. C. Greenham, X. Peng, and A. P. Alivisatos, Phys. Rev. B 54, 17628 (1996).

    Article  ADS  Google Scholar 

  26. E. N. Bodunov, V. V. Danilov, A. S. Panfutova, and A. L. Simoes Gamboa, Ann. Phys. (N.Y.) 528, 272 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Konshina.

Additional information

Original Russian Text © M.A. Kurochkina, E.A. Konshina, D.P. Shcherbinin, 2016, published in Optika i Spektroskopiya, 2016, Vol. 121, No. 4, pp. 641–647.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurochkina, M.A., Konshina, E.A. & Shcherbinin, D.P. Specific features of luminescence quenching in a nematic liquid crystal doped with nanoparticles. Opt. Spectrosc. 121, 585–591 (2016). https://doi.org/10.1134/S0030400X16100118

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X16100118

Navigation