Skip to main content
Log in

Destruction of Doped Lithium Tetraborate under Exposure to Ionizing and Laser Radiation

  • OPTICAL MATERIALS
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The results of the study of the degradation of thermoluminescent materials Li2B4O7:Be + Mn and Li2B4O7:Zn + Mn under the effect of radiation (pulsed electron beam) and laser radiation are presented. As a result of exposure to high doses of radiation, the structure of the samples under study partially acquires an amorphous character, while the effect of radiation exposure is manifested in the optical properties in the appearance of green luminescence due to manganese centers in the tetrahedral environment. With subsequent irradiation with a laser at a wavelength of 350 nm, luminescence centers decay due to photochemical oxidation of manganese by the reaction of Mn2+ → Mn3+. It is shown that Li2B4O7:Be + Mn has a lower radiation resistance than Li2B4O7:Zn + Mn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. T. Y. Kwon, J. J. Ju, J. W. Cha, J. N. Kim, and S. I. Yun, Mater. Lett. 20, 211 (1994). https://doi.org/10.1016/0167-577X(94)90089-2

    Article  Google Scholar 

  2. A. A. Kaminskii, L. Bohatý, P. Becker, J. Liebertz, H. J. Eichler, and H. Rhee, Laser Phys. Lett. 3, 519 (2006). https://doi.org/10.1002/lapl.200610053

    Article  ADS  Google Scholar 

  3. R. Komatsu, T. Sugawara, K. Sassa, N. Sarukura, Z. Liu, S. Izumida, Y. Segawa, S. Uda, T. Fukuda, and K. Yamanouchi, Appl. Phys. Lett. 70, 3492 (1997). https://doi.org/10.1063/1.119210

    Article  ADS  Google Scholar 

  4. V. Petrov, F. Rotermund, F. Noack, R. Komatsu, T. Sugawara, and S. Uda, J. Appl. Phys. 84, 5887 (1998).https://doi.org/10.1063/1.368904

    Article  ADS  Google Scholar 

  5. G. Kitis, C. Furetta, M. Prokić, and V. Prokić, J. Phys. D: Appl. Phys. 33, 1252 (2000). https://doi.org/10.1088/0022-3727/33/11/302

    Article  ADS  Google Scholar 

  6. D. Podgórska, S. M. Kaczmarek, W. Drozdowski, M. Wabia, M. Kwaśny, S. Warchoł, and V. M. Rizak, Mol. Phys. Rep. 39, 199 (2004).

    Google Scholar 

  7. V. M. Holovey, V. I. Sidey, V. I. Lyamayev, and M. M. Birov, J. Phys. Chem. Solids 68, 1305 (2007). https://doi.org/10.1016/j.jpcs.2007.02.005

    Article  ADS  Google Scholar 

  8. A. Kelemen, M. Ignatovych, V. Holovey, T. Vidóczy, and P. Baranyai, Radiat. Phys. Chem. 76, 1531 (2007). https://doi.org/10.1016/j.radphyschem.2007.02.067

    Article  ADS  Google Scholar 

  9. V. M. Holovey, V. I. Sidey, V. I. Lyamayev, and M. M. Birov, J. Phys. Chem. Solids 68, 1305 (2007). https://doi.org/10.1016/j.jpcs.2007.02.005

    Article  ADS  Google Scholar 

  10. M. Danilkin, I. Jaek, M. Kerikmäe, A. Lust, H. Mändar, L. Pung, A. Ratas, V. Seeman, S. Klimonsky, and V. Kuznetsov, Radiat. Meas. 45, 562 (2010). https://doi.org/10.1016/j.radmeas.2010.01.045

    Article  Google Scholar 

  11. S. Kar, S. Verma, and K. S. Bartwal, Phys. B (Amsterdam, Neth.) 405, 4299 (2010). https://doi.org/10.1016/j.physb.2010.07.030

  12. V. M. Holovey, K. P. Popovich, D. B. Goyer, V. M. Krasylynets, and A. V. Gomonnai, Radiat. Eff. Defects Solids 166, 522 (2011). https://doi.org/10.1080/10420150.2011.559235

    Article  ADS  Google Scholar 

  13. O. Annalakshmi, M. T. Jose, and G. Amarendra, Radiat. Meas. 46, 669 (2011). https://doi.org/10.1016/j.radmeas.2011.06.016

    Article  Google Scholar 

  14. M. Kayhan and A. Yilmaz, J. Alloys Compd. 509, 7819 (2011). https://doi.org/10.1016/j.jallcom.2011.04.137

    Article  Google Scholar 

  15. M. Ignatovych, M. Fasoli, and A. Kelemen, Radiat. Phys. Chem. 81, 1528 (2012). https://doi.org/10.1016/j.radphyschem.2012.01.042

    Article  ADS  Google Scholar 

  16. A. Ozdemir, Z. Yegingil, N. Nur, K. Kurt, T. Tuken, T. Depci, G. Tansug, V. Altunal, V. Guckan, G. Sigircik, Y. Yu, M. Karatasli, and Y. Dolek, J. Lumin. 173, 149 (2016). https://doi.org/10.1016/j.jlumin.2016.01.013

    Article  Google Scholar 

  17. A. Ratas, M. Danilkin, M. Kerikmäe, A. Lust, H. Mändar, V. Seeman, and G. Slavin, Proc. Est. Acad. Sci. 61, 279 (2012). https://doi.org/10.3176/proc.2012.4.03

    Article  Google Scholar 

  18. V. Nagirnyi, E. Aleksanyan, G. Corradi, M. Danilkin, E. Feldbach, M. Kerikmäe, A. Kotlov, A. Lust, K. Polgár, A. Ratas, I. Romet, and V. Seeman, Radiat. Meas. 56, 192 (2013). https://doi.org/10.1016/j.radmeas.2013.02.005

    Article  Google Scholar 

  19. T. D. Kelly, L. Kong, D. A. Buchanan, A. T. Brant, J. C. Petrosky, J. W. McClory, V. T. Adamiv, Y. V. Burak, and P. A. Dowben, Phys. Status Solidi B 250, 1376 (2013). https://doi.org/10.1002/pssb.201349013

    Article  ADS  Google Scholar 

  20. C. Dugan, R. L. Hengehold, S. R. McHale, J. A. Colón Santana, J. W. McClory, V. T. Adamiv, Ya. V. Burak, Ya. B. Losovyj, and P. A. Dowben, Appl. Phys. Lett. 102, 161602 (2013). https://doi.org/10.1063/1.4802760

    Article  ADS  Google Scholar 

  21. I. Romet, M. Buryi, G. Corradi, E. Feldbach, V. Laguta, É. Tichy-Rács, and V. Nagirnyi, Opt. Mater. 70, 184 (2017). https://doi.org/10.1016/j.optmat.2017.05.032

    Article  ADS  Google Scholar 

  22. A. T. Brant, B. E. Kananan, M. K. Murari, J. W. McClory, J. C. Petrosky, V. T. Adamiv, Ya. V. Burak, P. A. Dowben, and L. E. Halliburton, J. Appl. Phys. 110, 093719 (2011). https://doi.org/10.1063/1.3658264

    Article  ADS  Google Scholar 

  23. A. T. Brant, D. A. Buchanan, J. W. McClory, V. T. Adamiv, Ya. V. Burak, L. E. Halliburton, and N. C. Giles, J. Lumin. 153, 79 (2014). https://doi.org/10.1016/j.jlumin.2014.03.008

    Article  Google Scholar 

  24. D. A. Buchanan, M. S. Holston, A. T. Brant, J. W. McClory, V. T. Adamiv, Ya. V. Burak, and L. E. Halliburton, J. Phys. Chem. Solids 75, 1347 (2014). https://doi.org/10.1016/j.jpcs.2014.07.014

    Article  ADS  Google Scholar 

  25. G. D. Patra, S. G. Singh, A. K. Singh, M. Tyagi, D. G. Desai, B. Tiwari, S. Sen, and S. C. Gadkari, J. Lumin. 157, 333 (2015). https://doi.org/10.1016/j.jlumin.2014.09.017

    Article  Google Scholar 

  26. G. D. Patra, S. G. Singh, B. Tiwari, A. K. Singh, D. G. Desai, M. Tyagi, S. Sen, and S. C. Gadkari, Radiat. Meas. 88, 14 (2016). https://doi.org/10.1016/j.radmeas.2016.03.002

    Article  Google Scholar 

  27. I. Romet, E. Aleksanyan, M. G. Brik, G. Corradi, A. Kotlov, V. Nagirnyi, and K. Polgár, J. Lumin. 177, 9 (2016). https://doi.org/10.1016/j.jlumin.2016.04.014

    Article  Google Scholar 

  28. M. G. Celik, A. Yilmaz, and A. N. Yazici, Radiat. Meas. 102, 16 (2017). https://doi.org/10.1016/j.radmeas.2017.06.002

    Article  Google Scholar 

  29. M. Prokić, Radiat. Meas. 33, 393 (2001). https://doi.org/10.1016/S1350-4487(01)00039-7

    Article  Google Scholar 

  30. N. Can, T. Karali, P. D. Townsend, and F. Yıldız, J. Phys. D: Appl. Phys. 39, 2038 (2006). https://doi.org/10.1088/0022-3727/39/10/009

    Article  ADS  Google Scholar 

  31. G. Corradi, A. Watterich, K. Polgár, V. Nagirnyi, A. Hofstaetter, L. G. Rakitina, and M. Meyer, Phys. Status Solidi C 4, 1276 (2007). https://doi.org/10.1002/pssc.200673756

    Article  ADS  Google Scholar 

  32. G. Corradi, V. Nagirnyi, A. Kotlov, A. Watterich, M. Kirm, K. Polgár, A. Hofstaetter, and M. Meyer, J. Phys.: Condens. Matter 20, 025216 (2008). https://doi.org/10.1088/0953-8984/20/02/025216

    ADS  Google Scholar 

  33. G. Corradi, V. Nagirnyi, A. Watterich, A. Kotlov, and K. Polgár, J. Phys.: Conf. Ser. 249, 012008 (2010). https://doi.org/10.1088/1742-6596/249/1/012008

    Google Scholar 

  34. B. T. Huy, V. X. Quang, and M. Ishii, J. Lumin. 130, 2142 (2010). https://doi.org/10.1016/j.jlumin.2010.06.008

    Article  Google Scholar 

  35. A. Kelemen, D. Mesterházy, M. Ignatovych, and V. Holovey, Radiat. Phys. Chem. 81, 1533 (2012). https://doi.org/10.1016/j.radphyschem.2012.01.041

    Article  ADS  Google Scholar 

  36. A. T. Brant, D. A. Buchanan, J. W. McClory, P. A. Dowben, V. T. Adamiv, Ya. V. Burak, and L. E. Halliburton, J. Lumin. 139, 125 (2013). https://doi.org/10.1016/j.jlumin.2013.02.023

    Article  Google Scholar 

  37. T. Aydın, H. Demirtas, and S. Aydın, Radiat. Meas. 58, 24 (2013). https://doi.org/10.1016/j.radmeas.2013.07.010

    Article  Google Scholar 

  38. G. I. Malovichko, L. E. Vitruk, N. Yu. Yurchenko, Ya. V. Burak, V. G. Grachev, A. O. Matkovskii, and D. Yu. Sugak, Sov. Phys. Solid State 34, 272 (1992).

    Google Scholar 

  39. A. O. Matkovskii, D. Yu. Sugak, Ya. V. Burak, G. I. Malovichko, and V. G. Grachov, Radiat. Eff. Defects Solids 132, 371 (1994). https://doi.org/10.1080/10420159408219989

    Article  ADS  Google Scholar 

  40. I. N. Ogorodnikov, V. Y. Yakovlev, A. V. Kruzhalov, and L. I. Isaenko, Phys. Solid State 44, 1085 (2002). https://doi.org/10.1134/1.1485012

    Article  ADS  Google Scholar 

  41. Ya. V. Burak, B. V. Padlyak, and V. M. Shevel, Radiat. Eff. Defects Solids. 157, 1101 (2002). https://doi.org/10.1080/10420150215791

    Article  ADS  Google Scholar 

  42. Ya. V. Burak, B. V. Padlyak, and V. M. Shevel, Nucl. Instrum. Methods Phys. Res., Sect. B 191, 633 (2002). https://doi.org/10.1016/S0168-583X(02)00624-9

    Google Scholar 

  43. M. W. Swinney, J. W. McClory, J. C. Petrosky, Sh. Yang, A. T. Brant, V. T. Adamiv, Ya. V. Burak, P. A. Dowben, and L. E. Halliburton, J. Appl. Phys. 107, 113715 (2010). https://doi.org/10.1063/1.3392802

    Article  ADS  Google Scholar 

  44. I. N. Ogorodnikov, N. E. Poryvay, and V. A. Pustovarov, IOP Conf. Ser.: Mater. Sci. Eng. 15, 012016 (2010). https://doi.org/10.1088/1757-899X/15/1/012016

  45. M. I. Danilkin, Yu. A. Koksharov, I. Romet, V. O. Seeman, N. Yu. Vereschagina, A. I. Zubov, and A. S. Selyukov, Radiat. Meas. 126, 106134 (2019).https://doi.org/10.1016/j.radmeas.2019.106134

    Article  Google Scholar 

  46. N. Yu. Vereschagina, M. I. Danilkin, M. A. Kazaryan, D. I. Ozol, E. P. Sheshin, and D. A. Spassky, Proc. SPIE 10614, 106141F (2018). https://doi.org/10.1117/12.2303579

    Google Scholar 

  47. N. Yu. Vereshchagina and M. I. Danilkin, RF Patent No. 2660866 C1 (2018).

  48. V. N. Afanas’ev, V. B. Bychkov, V. D. Lartsev, V. P. Pudov, V. I. Solomonov, S. A. Shunailov, V. V. Generalova, and A. A. Gromov, Instrum. Exp. Tech. 48, 641 (2005). https://doi.org/10.1007/s10786-005-0114-y

    Article  Google Scholar 

  49. M. Kerikmäe, M. Danilkin, A. Lust, V. Nagirnyi, L. Pung, A. Ratas, I. Romet, and V. Seeman, Radiat. Meas. 56, 147 (2013). https://doi.org/10.1016/j.radmeas.2013.02.002

    Article  Google Scholar 

  50. H. Lin, R. Zhang, D. Chen, Y. Yu, A. Yang, and Y. Wang, J. Mater. Chem. C 1, 1804 (2013). https://doi.org/10.1039/C2TC00658H

    Article  Google Scholar 

  51. L. Shi, Y. Huang, and H. J. Seo, J. Phys. Chem. A 114, 6927 (2010). https://doi.org/10.1021/jp101772z

    Article  Google Scholar 

  52. L. Szōllösy, T. Szōrényi, and K. Szanka, Acta Phys. Chem. Szeged 21, 119 (1975).

    Google Scholar 

  53. L. Szōllösy, T. Szōrényi, and K. Szanka, Acta Phys. Chem. Szeged 20, 299 (1974).

    Google Scholar 

  54. V. D. Shcherbakov, Uch. Zap. Kazan. Univ., Ser. Fiz.-Mat. Nauki 157, 172 (2015).

    Google Scholar 

Download references

Funding

A. Selyukov is grateful for the support of the Russian Foundation for Basic Research within the framework of project no. 18-02-00811 A. The work is supported partly within the State Assignment of the Institute of Spectroscopy of the Russian Academy of Sciences and partly by the Russian Foundation for Basic Research, project no. 18-02-00811 A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. G. Vainer.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vainer, Y.G., Vereshchagina, N.Y., Danilkin, M.I. et al. Destruction of Doped Lithium Tetraborate under Exposure to Ionizing and Laser Radiation. Opt. Spectrosc. 127, 113–120 (2019). https://doi.org/10.1134/S0030400X19070257

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X19070257

Keywords:

Navigation