Skip to main content
Log in

On the early stages of the evolution of the geosphere and biosphere

  • Published:
Paleontological Journal Aims and scope Submit manuscript

Abstract

The conditions necessary for the existence of nucleic-protein life are as follows: the presence of liquid water, an atmosphere, and a magnetic field (all of which protect from meteorites, abrupt changes in temperature, and a flow of charged particles from space) and the availability of nutrients (macro-and microelements in the form of dissolved compounds). In the evolution of the geosphere, complex interference of irreversible processes (general cooling, gravitational differentiation of the Earth’s interior, dissipation of hydrogen, etc.) with cyclic processes of varying natures and periodicities (from the endogenic cycles “from Pangea to Pangea” to Milankovitch cycles), these conditions have repeatedly changed; hence, in the coevolution of the geosphere and biosphere, the vector of irreversible evolution was determined by the geosphere. Only with the appearance of the ocean as a global system of homeostasis, which provided the maintenance and leveling of nutrient concentrations in the hydrosphere, and the conveyor of nutrients from the mantle, “the film of life” could begin its expansion from the source of the nutrients. Life itself is a system of homeostasis, but not due to the global size and a vast buffer capacity, but because of the high rate of reactions and presence of a program (genome) that allowed its development (ontogeny) independent from the outside environment. The early stages of the origin and evolution of the biosphere (from the RNA-world to the development of the prokaryotic ecosystems) were characterized by the domination of chemotrophic ecosystems. The geographical ranges of these ecosystems were directly or indirectly (through the atmosphere and hydrosphere) tied to the sources of nutrients in the geosphere, which were in turn connected to various sources of volcanic and geotectonic activity (geothermal waters, “black smokers” along the rift zones, etc.). This gave the biosphere consisting of chemotrophic ecosystems a mosaic appearance composed of separate local oases of life. The decrease of methane and accumulation of O2 in the atmosphere in the geological evolution of the Earth caused the extinction of chemotrophic ecosystems and directed evolution of the biosphere toward autotrophy. Autotrophic photosynthesis gave the biosphere an energy source that was not connected to the geosphere, and for the first time allowed its liberation from the geosphere by developing its own vector of evolution. This vector resulted in the biosphere forming a continuous film of life on the planet by capturing the continents and occupying pelagic and abyssal zones, and the appearance of eukaryotes. The geosphere formed biogeochemical cycles in parallel to the geochemical ones, and comparable in the annual balances of participating matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. V. Alekseeva, E. V. Sapova, and A. O. Alekseev, “Transformations of Clayey Minerals under the Effect of Cyanobacteria,” in Proc. Int. Workshop on Biosphere Origin and Evolution (Novosibirsk, 2005), pp. 67–68.

  2. V. V. Aleshin and N. B. Petrov, “Conditionally Neutral Characters,” Priroda, No. 12, 25–34 (2003).

  3. E. Anders, “Pre-Biotic Organic Matter from Comets and Asteroids,” Nature 342(6247), 255–257 (1989).

    Article  Google Scholar 

  4. K. A. Astaf’eva-Urbaitis and N. A. Yasamanov, “Biotic Catastrophes on the Galactic Orbit of the Earth,” Dokl. Ross. Akad. Nauk 332(6), 752–754 (1993).

    Google Scholar 

  5. I. S. Barskov, “Biomineralization and Evolution: Coevolution of the Mineral and Biological Worlds,” in Proc. Int. Workshop on Biosphere Origin and Evolution (Novosibirsk, 2005), pp. 71–72.

  6. J. D. Bernal, The Origin of Life (London, 1967; Mir, Moscow, 1969).

  7. M. B. Burzin, “Precambrian Precursors of ‘The Pioneers of Land’,” Priroda, No. 3, 83–95 (1998).

  8. G. Caetano-Anolles, “Tracing the Evolution of RNA Structure in Ribosomes,” Nucleic Acids Res. 30(11), 2575–2587 (2002).

    Article  Google Scholar 

  9. A. G. Cairns-Smith, “Sketches for a Mineral Genetic Material,” Elements 1(6), 157–161 (2005).

    Google Scholar 

  10. S. B. Carroll, “Chance and Necessity; the Evolution of Morphological Complexity and Diversity,” Nature 409(6823), 1102–1109 (2001).

    Article  Google Scholar 

  11. J. Castresana and D. Moreira, “Respiratory Chains in the Last Common Ancestor of Living Organisms,” J. Mol. Evol. 49(4), 453–460 (1999).

    Article  Google Scholar 

  12. T. Cavalier-Smith, “Obcells as Proto-Organisms: Membrane Heredity, Lithophosphorylation, and the Origins of the Genetic Code, the First Cells, and Photosynthesis,” J. Mol. Evol. 53(4–5), 555–595 (2001).

    Article  Google Scholar 

  13. T. Cavalier-Smith, “The Neomuran Origin of Archaebacteria, the Negibacterial Root of the Universal Tree and Bacterial Megaclassification,” Int. J. Syst. Evol. Microbiol. 52(1), 7–76 (2002a).

    Google Scholar 

  14. T. Cavalier-Smith, “The Phagotrophic Origin of Eucaryotes and Phylogenetic Classification of Protozoa,” Int. J. Syst. Evol. Microbiol. 52(2), 297–354 (2002b).

    Google Scholar 

  15. T. Cavalier-Smith, “Origins of the Machinery of Recombination and Sex,” Heredity 88(2), 125–141 (2002c).

    Article  Google Scholar 

  16. A. B. Chetverin, “The Puzzle of RNA Recombination,” FEBS Lett. 460(1), 1–5 (1999).

    Article  Google Scholar 

  17. H. V. Chetverina and A. B. Chetverin, “Cloning of RNA Molecules in Vitro,” Nucleic Acids Res. 21(10), 2349–2353 (1993).

    Google Scholar 

  18. C. F. Chyba and G. D. McDonald, “The Origin of Life in the Solar System: Current Issues,” Annu. Rev. Earth Planet. Sci. 23, 215–249 (1995).

    Article  Google Scholar 

  19. K. C. Condie, Plate Tectonics and Crustal Evolution (Pergamon Press, Oxford, 1989).

    Google Scholar 

  20. A. G. Degermendzhi and V. G. Gubanov, “The Ecological and Evolutionary Principles of the Biogeochemical Cycles in the Biosphere: Theory and Experiments,” in Proc. Int. Workshop on Biosphere Origin and Evolution (Novosibirsk, 2005), pp. 47–49.

  21. N. L. Dobretsov, “On the Early Stages of the Origin and Evolution of Life,” Vestn. Vseross. O-va Genetikov i Selektsionerov 9(1), 43–54 (2004).

    Google Scholar 

  22. N. L. Dobretsov and A. G. Kirdyashkin, “The Evaluation of the Global Processes of the Mass Exchange between the Earth’s Shells: A Correlation between the Geological and Theoretical Data,” Geol. Geofiz. 39(9), 1269–1279 (1998).

    Google Scholar 

  23. N. L. Dobretsov and N. I. Kovalenko, “Global Changes in the Natural Environment,” Geol. Geofiz. 36(8), 7–30 (1995).

    Google Scholar 

  24. N. L. Dobretsov and N. N. Chumakov, “Global Periodic Changes in the Evolution of the Lithosphere and Biosphere,” in Global Changes in the Natural Environment (Sib. Otd. Ross. Akad. Nauk, GEO Branch, Novosibirsk, 2001), pp. 11–26 [in Russian].

    Google Scholar 

  25. N. L. Dobretsov, A. G. Kirdyashkin, and A. A. Kirdyashkin, Abyssal Geodynamics 2nd ed. (Geya, Novosibirsk, 2001) [in Russian].

    Google Scholar 

  26. G. Ertem, “Montmorillonite, Oligonucleotides, RNA and Origin of Life,” Orig. Life Evol. Biosph. 34(6), 549–570 (2004).

    Article  Google Scholar 

  27. M. A. Fedonkin, “Geochemical Impoversihment and Eukaryotization of the Biosphere: A Causal Link,” Paleontol. Zh., No. 6, 33–40 (2003) [Paleontol. J. 37 (6), 592–599 (2003)].

  28. J. P. Ferris, “Mineral Catalysis and Prebiotic Synthesis: Montmorillonite-Catalyzed Formation of RNA,” Elements 1(6), 145–149 (2005).

    Google Scholar 

  29. W. Gilbert, “The RNA World,” Nature 319(6055), 618 (1986).

    Article  Google Scholar 

  30. V. I. Gol’danskii and V. V. Kuz’min, “Spontaneous Bilateral Symmetry Breaking in Nature and the Origin of Life,” Usp. Fiz. Nauk 157(1), 1–50 (1989).

    Google Scholar 

  31. J. S. Greaves, “Disks around Stars and the Growth of Planetary,” Science 307(5706), 68–71 (2005).

    Article  Google Scholar 

  32. D. P. Grigor’ev, “V.I. Vernadsky and Modern Mineralogy,” Zap. Vses. Mineral. O-va 84(2), 136–142 (1955).

    Google Scholar 

  33. D. P. Grigor’ev, “The Development of Ideas on the Major Concerns of Mineralogy and the Concept of Minerals according to A.K. Boldyrev,” Zap. Vses. Mineral. O-va 85(4), 463–471 (1956).

    Google Scholar 

  34. K. V. Gunbin, V. V. Suslov, N. A. Omel’yanchuk, and N. A. Kolchanov, “Genetic Mechanisms of Morphologic Evolution, Part 1,” Sibirsk. Ekol. Zh. 11(5), 599–610 (2004a).

    Google Scholar 

  35. K. V. Gunbin, V. V. Suslov, N. A. Omel’yanchuk, and N. A. Kolchanov, “Genetic Mechanisms of Morphologic Evolution, Part 2,” Sibirsk. Ekol. Zh. 11(5), 611–621 (2004b).

    Google Scholar 

  36. R. M. Hazen, “Genesis: Rocks, Minerals, and the Geochemical Origin of Life,” Elements 1(6), 135–137 (2005).

    Google Scholar 

  37. R. Hengeveld and M. A. Fedonkin, “Causes and Consequences of Eukaryotization through Mutualistic Endosymbiosis and Compartmentalization,” Acta Biotheoretica 52(2), 105–154 (2004).

    Article  Google Scholar 

  38. V. A. Ivanisenko, S. S. Pintus, D. A. Grigorovich, N. A. Kolchanov, “PDBSite: A Database of the 3D Structure of Protein Functional Sites,” Nucleic Acids Res. Database Issue 33, D183–D187 (2005).

    Article  Google Scholar 

  39. E. P. Izokh, The Evaluation of Ore Content of Granitoid Formations for Prospecting (Nedra, Moscow, 1978) [in Russian].

    Google Scholar 

  40. W. K. Johnston, P. J. Unrau, M. S. Lawrence, et al., “RNA-Catalyzed RNA Polymerization: Accurate and General RNA-Template Primer Extension,” Science 292(5520), 1319–1325 (2001).

    Article  Google Scholar 

  41. G. F. Joyce, “The Antiquity of RNA-Based Evolution,” Nature 418(6894), 214–221 (2002).

    Article  Google Scholar 

  42. A. V. Kanygin, “The Ordovician Explosive Divergence of the Earth’s Organic Realm: Causes and Effects of the Biosphere Evolution,” Russ. Geol. Geophys. 42(4), 599–633 (2001).

    Google Scholar 

  43. A. V. Kanygin, “Geological Conditions of the Evolution of Life,” in Proc. Scientific Session on the Current Problems in Science (Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2004).

    Google Scholar 

  44. A. V. Kanygin, “Ecological Laws Governing Biosphere Evolution: Interrelationships of Cardinal Innovations in Living Systems and Geological Changes in Environment,” in Proc. Int. Workshop on Biosphere Origin and Evolution (Novosibirsk, 2005), p. 31.

  45. J. F. Kasting, “The Origins of Water on Earth,” Sci. Am. 13(3), 28–33 (2003).

    Google Scholar 

  46. V. E. Khain, The Main Problems in Modern Geology (Nauchn. Mir, Moscow, 2003) [in Russian].

    Google Scholar 

  47. A. H. Knoll, “Neoproterozoic Evolution and End Nomental Change,” in Early Life on Earth (Columbia Univ. Press, New York, 1994), pp. 439–449.

    Google Scholar 

  48. N. A. Kolchanov, V. V. Suslov, and V. K. Shumnyi, “Molecular Evolution of Genetic Systems,” Paleontol. Zh., No. 6, 58–71 (2003) [Paleontol. J. 37 (6), 617–629 (2003)].

  49. A. E. Kontorovich and V. S. Vyshemirskii, “Irregularity in Petroleum Formation in the History of the Earth as a Result of a Cyclic Development,” Dokl. Ross. Akad. Nauk 356(6), 794–797 (1997).

    Google Scholar 

  50. E. Ya. Kostetskii, “Solid-Phase Synthesis of Obcells and Their Components on Apatite Matrix and Cocrystallized Minerals,” in Proc. Int. Workshop on Biosphere Origin and Evolution (Novosibirsk, 2005), pp. 65–66.

  51. J. R. de Laeter and A. F. Trendall, “The Oldest Rocks: The Western Australian Connection,” J. R. Soc. W. Austral. 85(4), 153–160 (2002).

    Google Scholar 

  52. D. Lazzaro, M. Price, M. de Felice, and R. Di Lauro, “The Transcription Factor TTF-1 Is Expressed at the Onset of Thyroid and Lung Morphogenesis and in Restricted Regions of the Foetal Brain,” Development 113(4), 1093–1104 (1991).

    Google Scholar 

  53. A. Yu. Lein, N. N. Glushchenko, G. A. Osipov, N. V. Ul’yanova, and M. V. Ivanov, “Biomarkers of the Sulfide Ores of Present-Day and Ancient Black Smokers,” Dokl. Ross. Akad. Nauk 359A(3), 525–528 (1998) [Dokl. Earth Sci. 359A (3), 406–409 (1998)].

    Google Scholar 

  54. A. P. Lisitsyn, “The History of the Volcanism in the Oceans,” Geological History of the Ocean (Nauka, Moscow, 1980), pp. 278–319 [in Russian].

    Google Scholar 

  55. A. P. Lisitsyn, “Hydrothermal Systems of the World Ocean—a Supplier of Endogenic Substances,” in Hydrothermal Systems and Sedimentary Formations of the Mid-Oceanic Ridges of the Atlantic Ocean (Nauka, Moscow, 1993), pp. 147–247 [in Russian].

    Google Scholar 

  56. A. P. Lisitsyn, “Lithology of Lithospheric Plates,” Geol. Geofiz. 42(4), 522–559 (2001).

    Google Scholar 

  57. A. P. Lisitsyn and A. I. Sagalevich, “The Major Discovery in the Ocean,” Nauka v Rossii, No. 1, 15–25 (2000).

  58. A. P. Lisitsyn, Yu. A. Bogdanov, and E. G. Gurevich, Hydrothermal Formations of the Rift Zones of the Ocean (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  59. A. A. Lyubishchev, The Problems of the Form, Systematics, and Evolution of Organisms (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  60. V. V. Malakhov and S. V. Galkin, Vestimentifera—Gutless Invertebrates of Marine Depths (KMK Ltd., Moscow, 1998) [in Russian].

    Google Scholar 

  61. V. V. Malakhov, I. S. Popelyaev, and S. V. Galkin, “The Morphology of Vestimentifera (Pogonophora),” Zool. Zh. 76(11), 1308–1335 (1997) [Russian J. Zool. 76 (11), 481–507 (1997)].

    Google Scholar 

  62. W. Martin and M. J. Russell, “On the Origins of Cells: A Hypothesis for the Evolutionary Transitions from Abiotic Geochemistry to Chemoautotrophic Prokaryotes, and from Prokaryotes to Nucleated Cells,” Phil. Trans. R. Soc. London. Ser. B. Biol. Sci. 358(1429), 59–85 (2003).

    Article  Google Scholar 

  63. V. V. Maslennikov, Sedimentogenesis, Halmyrolysis, and Ecology of Pyrites-Bearing Paleohydrothermal Fields (Using the Southern Urals as an Example) (Geotur, Miass, 1999) [in Russian].

    Google Scholar 

  64. V. V. Maslennikov, A. Yu. Shpanskaya, and C. Little, “On Vestimentifera, Alvinellida, and Paleoecology of Hydrothermal Oases of the Uralian Paleoocean,” in Metallogeny of the Ancient and Present-Day Oceans-97: The Processes of Ore Formation (Inst. Mineral. Ural. Otd. Ross. Akad. Nauk, Miass, 1997), pp. 150–160 [in Russian].

    Google Scholar 

  65. P. A. Monnard, C. L. Apel, A. Kanavarioti, and D. W. Deamer, “Influence of Ionic Inorganic Solutes on Self-Assembly and Polymerization Processes Related of Early Forms of Life: Implications for a Prebiotic Aqueous Medium,” Astrobiol. 2(2), 139–152 (2002).

    Article  Google Scholar 

  66. E. G. Nisbet and N. H. Sleep, “The Habitant and Nature of Early Life,” Nature 409(6823), 1083–1091 (2001).

    Article  Google Scholar 

  67. V. V. Polevoi, “The Living State of Cells,” in The Evolution of Functions in the Plant World (Leningradsk. Gos. Univ., Leningrad, 1985), pp. 36–45 [in Russian].

    Google Scholar 

  68. A. A. Prozorov, “Altruism in the World of Bacteria?,” Usp. Sovr. Biol. 122(5), 403–413 (2002).

    Google Scholar 

  69. R. A. Raff and B. J. Sly, “Modularity and Dissociation in the Evolution of Gene Expression Territories in Development,” Evol. Dev. 2(2), 102–113 (2000).

    Article  Google Scholar 

  70. V. A. Ratner, “Patterns in the Encoding of Genetic Information (Genetic Language),” in Genetics, Molecular Cybernetics: Personalities and Problems (Nauka, Novosibirsk, 2002), pp. 203–218 [in Russian].

    Google Scholar 

  71. V. A. Ratner, A. A. Zharkikh, N. A. Kolchanov, et al., Problems in the Theory of Molecular Evolution (Nauka, Novosibirsk, 1985) [in Russian].

    Google Scholar 

  72. M. K. Richardson and G. Keuch, “Haeckel’s ABC of Evolution and Development,” Biol. Rev. Camb. Philos. Soc. 77(4), 495–528 (2002).

    Article  Google Scholar 

  73. M. K. Richardson, J. Hanken, M. L. Gooneratne, et al., “There Is No Highly Conserved Embryonic Stage in the Vertebrates: Implications for Current Theories of Evolution and Development,” Anat. Embryol. 196(2), 91–106 (1997).

    Article  Google Scholar 

  74. A. Yu. Rozanov, “Geobiological Events in the Precambrian,” in Proc. Int. Workshop on Biosphere Origin and Evolution (Novosibirsk, 2005), p. 38.

  75. A. Yu. Rozanov and M. A. Fedonkin, “The Problem of the Initial Biotope of Eukaryotes,” in Turnovers in Ecosystems and the Evolution of the Biosphere, Issue 1 (Nedra, Moscow, 1994), pp. 25–32 [in Russian].

    Google Scholar 

  76. A. Yu. Rozanov and G. A. Zavarzin, “Bacterial Paleontology,” Vestn. Ross. Akad. Nauk 67(3), 241–245 (1997).

    Google Scholar 

  77. D. V. Rundkvist, “One General Pattern in the Geologic Development,” in Proc. Conf. on the General Regularities in the Geologic Development: Issue 1 (Leningrad, 1965), pp. 79–91.

  78. D. V. Rundkvist, “Problems in Studying the Phylogeny of Mineral Resources,” Zap. Vses. Mineral. O-va 97(2), 191–209 (1968a).

    Google Scholar 

  79. D. V. Rundkvist, “Ontogeny and Phylogeny of Greisen Deposits,” Extended Abstract of Doctoral Dissertation in Geology and Mineralogy (Leningrad, 1968b).

  80. D. V. Rundkvist, V. K. Denisenko, and I. G. Pavlova, Greisen Deposits (Ontogeny and Phylogeny) (Nedra, Moscow, 1971) [in Russian].

    Google Scholar 

  81. A. O. Ruvinskii, “Sex, Meiosis, and Progressive Evolution,” in Problems in Genetics and the Theory of Evolution (Nauka, Novosibirsk, 1991), pp. 214–228 [in Russian].

    Google Scholar 

  82. M. Schidlowski, “A 3800 Million-Year Old Record of Life from Carbon in Sedimentary Rocks,” Nature 333(6171), 313–318 (1988).

    Article  Google Scholar 

  83. I. I. Schmalhausen, Factors of Evolution (Theory of Stabilizing Selection) (Nauka, Moscow, 1968) [in Russian].

    Google Scholar 

  84. J. W. Schopf, Earth’s Earliest Biosphere: Its Origin and Evolution, Ed. by J. W. Schopf (Univ. Press, Princeton, 1983).

    Google Scholar 

  85. J. W. Schopf and B. M. Parker, “Early Archean (3.3 Billion to 3.5 Billion Year Old) Microfossils from Warrawoona Group, Australia,” Science 237(4810), 70–73 (1987).

    Google Scholar 

  86. M. A. Semikhatov, “The Latest Scales for the General Subdivision of the Precambrian: A Comparison,” Stratigr. Geol. Korrelatsia 1(1), 6–16 (1993).

    Google Scholar 

  87. V. N. Sergeev, E. Kh. Noll, and G. A. Zavarzin, “The First Three Billion Years of Life: From Prokaryotes to Eukaryotes,” Priroda, No. 6, 54–67 (1996).

  88. S. V. Shestakov, “The Contribution of Genomics to the Study of the Evolution of Prokaryotes,” in Proc. Int. Workshop on Biosphere Origin and Evolution (Novosibirsk, 2005), p. 24.

  89. J. V. Smith, “Geochemical Influences on Life’s Origins and Evolution,” Elements 1(6), 151–156 (2005).

    Google Scholar 

  90. V. N. Snytnikov, “Astrocatalysis: The Origin of Organic Prebiotic Compounds on the Earth,” in Proc. Int. Workshop on Biosphere Origin and Evolution (Novosibirsk, 2005), pp. 13–15.

  91. V. N. Snytnikov and V. N. Parmon, “Does Life Create Planets? ‘Preterrestrial’ Life Does Not Necessarily Mean Extraterrestrial Life: A New Hypothesis of the Origin of Life Advanced by Siberian Scientists,” Nauka iz Pervykh Ruk, 20–31 (2004).

  92. A. J. Solari, “Primitive Forms of Meiosis: The Possible Evolution of Meiosis,” BioCell 26(1), 1–13 (2002).

    Google Scholar 

  93. O. G. Sorokhtin and G. D. Ushakov, Global Evolution of the Earth (Mosk. Gos. Univ., Moscow, 1991) [in Russian].

    Google Scholar 

  94. O. G. Sorokhtin and S. A. Ushakov, Development of the Earth (Mosk. Gos. Univ., Moscow, 2002) [in Russian].

    Google Scholar 

  95. A. S. Spirin, “Omnipotent RNA,” FEBS Lett. 530(1–3), 4–8 (2002).

    Article  Google Scholar 

  96. A. S. Spirin, “Origin, Possible Forms of Being, and Size of the Primeval Organisms,” Paleontol. Zh., No. 4, 25–32 (2005) [Paleontol. J. 39 (4), 364–371 (2005)].

  97. Ya. I. Starobogatov, “The Problem of Speciation,” in Itogi Nauki Tekh., Ser. Obshch. Biol. (VINITI, Moscow, 1985), Vol. 20 [in Russian].

    Google Scholar 

  98. R. J. Taft and J. S. Mattick, “Increasing Biological Complexity Is Positively Correlated with the Relative Genome-Wide Expansion of Non-Protein-Coding DNA Sequences,” Genome Biol. 5, 1 (2003).

    Article  Google Scholar 

  99. E. Tajika and N. Matsui, “Evolution of Terrestrial Proto-CO2-Atmosphere Coupled with Thermal History of Earth,” Earth Planet. Sci. Lett. 113, 251–266 (1992).

    Article  Google Scholar 

  100. P. P. Timofeev, M. A. Rateev, N. V. Rengarten, et al., The Problems of the World Ocean: Lithology and Geochemistry of the Pacific Ocean (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  101. E. N. Trifonov, “Genetic Sequences as Product of Compression by Inclusive Superposition of Many Codes,” Mol. Biol. 31(4), 759–767 (1997) [Mol. Biol. 31 (4), 647–655 (1997)].

    Google Scholar 

  102. B. J. Tucker and R. R. Breaker, “Riboswitches as Versatile Gene Control Elements,” Curr. Opin. Struct. Biol. 15(3), 342–348 (2005).

    Article  Google Scholar 

  103. P. J. Unrau and D. P. Bartel, “RNA-Catalized Nucleotide Synthesis,” Nature 395(6699), 260–263 (1998).

    Article  Google Scholar 

  104. G. T. Ushatinskaya, L. M. Gerasimenko, E. A. Zhegallo, V. K. Orleanskii, “The Role of Bacteria in the Precipitation of Carbonates, Phosphates, and Silicates under Natural Conditions and in Experiments,” in Proc. Int. Workshop on Biosphere Origin and Evolution (Novosibirsk, 2005), pp. 177–178.

  105. V. P. Vasil’ev, E. D. Vasil’eva, and A. G. Osipov, “The First Evidence in Favor of the Basic Hypothesis of Netlike Speciation in Vertebrates,” Dokl. Akad. Nauk SSSR 271(4), 1009–1012 (1983).

    Google Scholar 

  106. N. I. Vavilov, “The Law of Homologous Series in Hereditary Variability,” in Selected Papers in Two Volumes (Nauka, Leningrad, 1967), Vol. 1, pp. 7–61 [in Russian].

    Google Scholar 

  107. V. I. Vernadsky, Chemical Structure of the Earth’s Biosphere and Its Surroundings, 2nd ed. (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  108. M. E. Vinogradov, “Biological Productivity of Oceanic Ecosystems,” in New Ideas in Oceanology (Nauka, Moscow, 2004), Vol. 1, pp. 237–263 [in Russian].

    Google Scholar 

  109. M. E. Vinogradov, V. I. Vedernikov, E. A. Romankevich, and A. A. Vetrov, “Components of the Carbon Cycle in the Russian Arctic Seas: Primary Production and Flux of Corg from the Photic Layer,” Okeanologiya 40(2), 221–233 (2000) [Oceanology 40 (2), 204–215 (2000)].

    Google Scholar 

  110. A. Vlassov, “Mini-Ribozymes and Freezing Environment: A New Scenario for the Early RNA World,” in Proc. Int. Workshop on Biosphere Origin and Evolution (Novosibirsk, 2005), p. 30.

  111. L. I. Vorob’eva, “The Wonderful World of Archaebacteria,” Nauka v Rossii, No. 5, 13–20 (2004).

  112. W. C. Winkler, “Riboswitches and the Role of Noncoding RNAs in Bacterial Metabolic Control,” Curr. Opin. Chem. Biol. 9(6), 594–602 (2005).

    Article  Google Scholar 

  113. A. A. Yaroshevskii, “Chemical Composition of the Earth’s Crust,” Priroda, No. 6, 58–66 (1997).

  114. N. P. Yushkin, Biological-Mineralogical Interactions (Nauka, Moscow, 2002) [in Russian].

    Google Scholar 

  115. M. M. Yusupov, G. Z. Yusupova, A. Baucom, et al., “Crystal Structure of the Ribosome at 5.5 Å Resolution,” Science 292(5518), 883–896 (2001).

    Article  Google Scholar 

  116. V. E. Zakrutkin, “On the Rates of Accumulation of Organic Matter in the Precambrian and Phanerozoic,” in Problems in the Pre-Anthropogene Evolution of the Biosphere (Nauka, Moscow, 1993), pp. 202–212 [in Russian].

    Google Scholar 

  117. G. A. Zavarzin, “Individualism and Systems Analysis—Two Approaches to Evolution,” Priroda, No. 1, 23–34 (1999).

  118. G. A. Zavarzin, “The Early Stages of the Biosphere,” Vestn. Ross. Akad. Nauk 71(11), 988–1001 (2001).

    Google Scholar 

  119. G. A. Zavarzin, “Evolution of the Geosphere-Biosphere System,” Priroda, No. 1, 27–35 (2003a).

  120. G. A. Zavarzin, Lectures in Natural-History Microbiology (Nauka, Moscow, 2003b) [in Russian].

    Google Scholar 

  121. G. A. Zavarzin, “The Early Stages of the Biosphere,” in Proc. Int. Workshop on Biosphere Origin and Evolution (Novosibirsk, 2005), pp. 11–12.

  122. J. P. Zehr, B. D. Jenkins, S. M. Short, G. F. Steward, “Nitrogenase Gene Diversity and Microbial Community Structure: A Cross-System Comparison,” Environ. Microbiol. 5(7), 539–554 (2003).

    Article  Google Scholar 

  123. A. G. Zhabin, Ontogeny of Minerals (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  124. T. N. Zhilina and G. A. Zavarzin, “Soda Lakes—A Natural Model of the Ancient Biosphere on Continents,” Priroda, No. 2, 45–55 (2000).

  125. G. Zhouravleva, O. Tarasov, A. Petrova, and S. Inge-Vechtomov, “Evolution of Translation Termination Factor eRF3,” in Proc. Int. Workshop on Biosphere Origin and Evolution (Novosibirsk, 2005), p. 21.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dobretsov, N.L., Kolchanov, N.A. & Suslov, V.V. On the early stages of the evolution of the geosphere and biosphere. Paleontol. J. 40, S407–S424 (2006). https://doi.org/10.1134/S0031030106100017

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031030106100017

Key words

Navigation