Skip to main content
Log in

Effect of abrasive water jet on the structure of the surface layer of Al–Mg alloy

  • Structure, Phase Transformations, and Diffusion
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Optical, scanning, and transmission electron microscopy methods, and X-ray diffraction analysis have been used to study the changes in the structure and the microhardness in the surface layer of the Al–Mg (5.8–6.8 wt %) alloy after water jet cutting. The dislocation density, the sizes of coherent scattering regions, and microdistortions have been determined. The transformation of the fine structure has been revealed in the displacement from the alloy volume to the abrasive-waterjet cutting surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Denisov, “Increasing the efficiency of cutting of working-parts of thick-sheet metals on the base of a discrete supply of abrasive,” Candidate Sci. (Eng.) Dissertation, Mosk. Gos. Tekh. Univ. “STANKIN”, 2014.

    Google Scholar 

  2. V. A. Tarasov and A. N. Polukhin, “Estimation of the geometric parameters of the surface formed during hydro-abrasive treatment,” Vestn. Mosk. Gos. Tekh. Univ. (MGTU), Ser. Mashinostroenie, no. 1, 107–116 (2012).

    Google Scholar 

  3. A. M. Ignatova, M. N. Ignatov, and R. N. Sharitnov, “The classification of the basic elements of the technological system of the waterjet cutting to ensure the accuracy and quality of the cut surface,” Russ. Internet J. Indust. Eng. 3, 17–20 (2015).

    Google Scholar 

  4. V. A. Levko, “Abrasive-extrusion treatment: Contemporary achievements, problems and trends of the development,” Izv. Tomsk. Politekhn. Univ.: Inzhiniring Georesursov 309 (6), 125–129 (2006).

    Google Scholar 

  5. K. I. Mirkin, A Handbook on X-ray Diffraction Analysis of Polycrystal (Fizmatgiz, Moscow, 1961) [in Russian].

    Google Scholar 

  6. S. S. Gorelik, L. N. Rastorguev, and Yu. A. Skakov, X-ray Difraction and Electronographic Analysis of Metals (Gos. Nauchn.-Tekhn. Izd. Chern. Tsvetn. Metall., Moscow, 1963) [in Russian].

    Google Scholar 

  7. L. M. Utevskii, Diffraction Electron Microscopy in Metal Science Metallurgiya, Moscow, 1973) [in Russian].

    Google Scholar 

  8. P. B. Hirsch, A. Howie, R. B. Nicholson, D. W. Pashley, and M. J. Whelan, Electron Microscopy of Thin Crystals (New York: Krieger, 1977), 2nd ed.

    Google Scholar 

  9. V. A. Kolachev, V. A. Livanov, and V. I, Elagin, Metal Science and Heat Treatment of Non-ferrous Metals and Alloys (Metallurgiya, Moscow, 1972) [in Russian].

    Google Scholar 

  10. N. A. Belov, Phase Composition of Industrial and Perspective Aluminum Alloys (MISiS, Moscow, 2010) [in Russian].

    Google Scholar 

  11. V. S. Zolotarevskii and N. A. Belov, Metal Science of Casting Aluminum Alloys (MISiS, Moscow, 2005) [in Russian].

    Google Scholar 

  12. L. I. Kaigorodova, V. M. Zamyatin, and V. I. Popov, “The influence of homogenizing conditions on the structure and properties of an Al–Mg alloy,” Phys. Met. Metallogr. 98, 75–82 (2004).

    Google Scholar 

  13. Metal Science of Aluminum and Its Alloys, Ed. by I. N. Fridlyander, (Metallurgiya, Moscow, 1983) [in Russian].

  14. I. G. Brodova, A. N. Petrova, S. V. Razorenov, and E. V. Shorokhov, “Resistance of submicrocrystalline aluminum alloys to high-rate deformation and fracture after dynamic channel angular pressing,” Phys. Met. Metallogr. 116, 519–527 (2015).

    Article  Google Scholar 

  15. L. I. Kaigorodova, D. Yu. Rasposienko, V. G. Pushin, V. P. Pilyugin, and S. V. Smirnov, “Structure and mechanical properties of aging Al–Li–Cu–Zr–Sc–Ag alloy after severe plastic deformation by high-pressure torsion,” Phys. Met. Metallogr. 116, 346–355 (2015).

    Article  Google Scholar 

  16. L. I. Kaigorodova, D. Yu. Rasposienko, V. G. Pushin, V. P. Pilyugin, and S. V. Smirnov, “Structure of aging Al–Li–Cu–Zr–Sc–Ag alloy after severe plastic deformation and long-term storage,” Phys. Met. Metallogr. 116, 1108–1115 (2015).

    Article  Google Scholar 

  17. A. N. Petrova, I. G. Brodova, and E. V. Shorokhov, “Structural refinement in Al–Mg–Mn alloy by the dynamic channel-angular pressing method,” Perspekt. Mater., no. 12, 72–77 (2015).

    Google Scholar 

  18. A. N. Petrova, H. Radziszewska, L. Kaczmarek, M. Klih, I. G. Brodova, and M. Steglinski, “Influence of megaplastic deformation on the structure and hardness of Al–Cu–Mg alloy after aging,” Phys. Met. Metallogr. 117, 1237–1244 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. I. Tabatchikova.

Additional information

Original Russian Text © T.I. Tabatchikova, N.A. Tereshchenko, I.L. Yakovleva, N.Z. Gudnev, 2017, published in Fizika Metallov i Metallovedenie, 2017, Vol. 118, No. 9, pp. 924–934.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabatchikova, T.I., Tereshchenko, N.A., Yakovleva, I.L. et al. Effect of abrasive water jet on the structure of the surface layer of Al–Mg alloy. Phys. Metals Metallogr. 118, 879–889 (2017). https://doi.org/10.1134/S0031918X17090095

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X17090095

Keywords

Navigation