Skip to main content
Erschienen in: Physics of Metals and Metallography 8/2018

01.08.2018 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Structure of the Surface Layers of Metastable Austenitic Stainless Steel Nitrided in Electron Beam Plasma

verfasst von: V. A. Shabashov, N. V. Gavrilov, K. A. Kozlov, A. V. Makarov, S. G. Titova, V. I. Voronin

Erschienen in: Physics of Metals and Metallography | Ausgabe 8/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effect of the nitriding temperature in electron beam plasma on the structural and phase composition of the surface layers of metastable austenitic stainless steels is studied. Conversion electron Mössbauer spectroscopy shows that nitriding at 350°C results in the transition of the austenite into the α (bcc) phase by the shear mechanism in the surface layers of a plate (tenths of a micron). A nitrogen supersaturated austenite and a mixture of nitrides with a predominant configuration of three nitrogen atoms in the environment of iron are formed in layers 1–5 μm thick. Nitriding at a temperature of 500°C and above leads to nitrogen supersaturated austenite decomposition, the escape of chromium and nitrogen from the matrix into nitrides CrN, Fe4N, and FexN, and the subsequent γ → α phase transformation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Yu. M. Lakhtin and Ya. D. Kogan, Nitrided steels (Mashinostroenie, Moscow, 1976) [in Russian]. Yu. M. Lakhtin and Ya. D. Kogan, Nitrided steels (Mashinostroenie, Moscow, 1976) [in Russian].
2.
Zurück zum Zitat A. S. Biro, “Trends of nitriding processes,” Production Processes and Systems 6, 57–66 (2013). A. S. Biro, “Trends of nitriding processes,” Production Processes and Systems 6, 57–66 (2013).
3.
Zurück zum Zitat P. Jurci, J. Suchanek, and P. Stolar, “Effect of various plasma nitriding procedures on surface characteristics of P/M high speed steel,” Prog. Heat Treat. Surf. Eng. 197–208 (2000). P. Jurci, J. Suchanek, and P. Stolar, “Effect of various plasma nitriding procedures on surface characteristics of P/M high speed steel,” Prog. Heat Treat. Surf. Eng. 197–208 (2000).
4.
Zurück zum Zitat E. Menthe, K. -T. Rie, J. W. Schultze, and S. Simson, “Structure and properties of plasma nitrided stainless steel,” Surf. Coat. Technol. 74–75, 412–416 (1995).CrossRef E. Menthe, K. -T. Rie, J. W. Schultze, and S. Simson, “Structure and properties of plasma nitrided stainless steel,” Surf. Coat. Technol. 74–75, 412–416 (1995).CrossRef
5.
Zurück zum Zitat A. D. Korotaev, S Ovchinnikov, A. N. Tyumentsev, Yu, Pinzhin, I. N. Goncharenko, N. N. Koval’, and P. N. Shchanin, “Ionic nitriding of ferritic–pearlitic and austenitic steels in low-pressure gas discharges,” Fiz. Khim. Obrab. Mater. No. 1, 22–27 (2004). A. D. Korotaev, S Ovchinnikov, A. N. Tyumentsev, Yu, Pinzhin, I. N. Goncharenko, N. N. Koval’, and P. N. Shchanin, “Ionic nitriding of ferritic–pearlitic and austenitic steels in low-pressure gas discharges,” Fiz. Khim. Obrab. Mater. No. 1, 22–27 (2004).
6.
Zurück zum Zitat L. Wang, X. Xu, Z. Yu, and Z. Hei, “Low pressure plasma arc source ion nitriding of austenitic stainless steel,” Surf. Coat. Technol. 124, 93–96 (2000).CrossRef L. Wang, X. Xu, Z. Yu, and Z. Hei, “Low pressure plasma arc source ion nitriding of austenitic stainless steel,” Surf. Coat. Technol. 124, 93–96 (2000).CrossRef
7.
Zurück zum Zitat V. A. Shabashov, S Borisov, A Litvinov, A. E. Zamatovskii, N. F. Vil’danova, V. I. Voronin, and O, Shepatkovskii, “Nanostructure formation and phase transformations in nitrided stainless steel Kh18N8 during severe cold deformation,” Phys. Met. Metallogr. 107, 601–612 (2009).CrossRef V. A. Shabashov, S Borisov, A Litvinov, A. E. Zamatovskii, N. F. Vil’danova, V. I. Voronin, and O, Shepatkovskii, “Nanostructure formation and phase transformations in nitrided stainless steel Kh18N8 during severe cold deformation,” Phys. Met. Metallogr. 107, 601–612 (2009).CrossRef
8.
Zurück zum Zitat T. Christiansen and M. A. J. Somers, “Stress and composition of carbon stabilized expanded austenite on stainless steel,” Metall. Mater. Trans. A 40, 1791–1798 (2009).CrossRef T. Christiansen and M. A. J. Somers, “Stress and composition of carbon stabilized expanded austenite on stainless steel,” Metall. Mater. Trans. A 40, 1791–1798 (2009).CrossRef
9.
Zurück zum Zitat A. Galdikas and T. Moskalioviene, “Stress induced nitrogen diffusion during nitriding of austenitic stainless steel,” Comput. Mater. Sci. 50, 796–799 (2010).CrossRef A. Galdikas and T. Moskalioviene, “Stress induced nitrogen diffusion during nitriding of austenitic stainless steel,” Comput. Mater. Sci. 50, 796–799 (2010).CrossRef
10.
Zurück zum Zitat L. Shen, L. Wang, and J. J. Xu, “Plasma nitriding of AISI 304 austenitic stainless steel assisted with hollow cathode effect,” Surf. Coat. Technol. 228, S456–S459 (2013).CrossRef L. Shen, L. Wang, and J. J. Xu, “Plasma nitriding of AISI 304 austenitic stainless steel assisted with hollow cathode effect,” Surf. Coat. Technol. 228, S456–S459 (2013).CrossRef
11.
Zurück zum Zitat N Gavrilov and A. I. Men’shakov, “Effect of the electron beam and ion flux parameters on the rate of plasma nitriding of an austenitic stainless steel,” Tech. Phys. 57, 399–404 (2012).CrossRef N Gavrilov and A. I. Men’shakov, “Effect of the electron beam and ion flux parameters on the rate of plasma nitriding of an austenitic stainless steel,” Tech. Phys. 57, 399–404 (2012).CrossRef
12.
Zurück zum Zitat N. Gavrilov and A. S. Mamaev, “Low-temperature nitriding of titanium in low-energy electron-beam-excited plasma,” Tech. Phys. Lett. 35, 713–716 (2009).CrossRef N. Gavrilov and A. S. Mamaev, “Low-temperature nitriding of titanium in low-energy electron-beam-excited plasma,” Tech. Phys. Lett. 35, 713–716 (2009).CrossRef
13.
Zurück zum Zitat A Makarov, N Gavrilov, G Samoilova, A. S. Mamaev, A. L. Osintseva, and R. A. Savrai, “Effect of a continuous and gas-cyclic plasma nitriding on the quality of nanostructured austenitic stainless steel,” Obrab.Met. (Tekhnol., Oborud., Instrum.), No. 2, 55–66 (2017). A Makarov, N Gavrilov, G Samoilova, A. S. Mamaev, A. L. Osintseva, and R. A. Savrai, “Effect of a continuous and gas-cyclic plasma nitriding on the quality of nanostructured austenitic stainless steel,” Obrab.Met. (Tekhnol., Oborud., Instrum.), No. 2, 55–66 (2017).
14.
Zurück zum Zitat V. S. Rusakov, Mössbauer spectroscopy of locally inhomogeneous systems (OPNI IYaF NYaTs, Respublika Kazakhstan, Almaty, 2000) [in Russian]. V. S. Rusakov, Mössbauer spectroscopy of locally inhomogeneous systems (OPNI IYaF NYaTs, Respublika Kazakhstan, Almaty, 2000) [in Russian].
15.
Zurück zum Zitat S. O. Muradyan, Structure and properties of cst corrosion-resistant steel alloyed with nitrogen, Cand. Sci. (Eng.) Dissertation, Moscow, Baikov Institute of Metallurgy, Russian Academy of Sciences, 2015. S. O. Muradyan, Structure and properties of cst corrosion-resistant steel alloyed with nitrogen, Cand. Sci. (Eng.) Dissertation, Moscow, Baikov Institute of Metallurgy, Russian Academy of Sciences, 2015.
16.
Zurück zum Zitat F. Van der Woude and G. A. Sawatzky, “Mossbauer effect in iron and dilute iron based alloys,” Phys. Rep. (Section C of Physics Letters) 12, 335–374 (1974).CrossRef F. Van der Woude and G. A. Sawatzky, “Mossbauer effect in iron and dilute iron based alloys,” Phys. Rep. (Section C of Physics Letters) 12, 335–374 (1974).CrossRef
17.
Zurück zum Zitat T. Moriya, Y. Sumitomo, H. Ino, E. Fujita, and Y. Maeda, “Mössbauer effect in iron–nitrogen alloys and compounds,” J. Phys. Soc. Jpn. 35, 1378–1385 (1973).CrossRef T. Moriya, Y. Sumitomo, H. Ino, E. Fujita, and Y. Maeda, “Mössbauer effect in iron–nitrogen alloys and compounds,” J. Phys. Soc. Jpn. 35, 1378–1385 (1973).CrossRef
18.
Zurück zum Zitat V. A. Shabashov, S. V. Borisov, A. E. Zamatovsky, N. F. Vildanova, A. G. Mukoseev, A. V. Litvinov, and O. P. Shepatkovsky, “Deformation-induced transformations in nitride layers formed in bcc iron,” Mater. Sci. Eng., A 452–453, 575–583 (2007).CrossRef V. A. Shabashov, S. V. Borisov, A. E. Zamatovsky, N. F. Vildanova, A. G. Mukoseev, A. V. Litvinov, and O. P. Shepatkovsky, “Deformation-induced transformations in nitride layers formed in bcc iron,” Mater. Sci. Eng., A 452–453, 575–583 (2007).CrossRef
19.
Zurück zum Zitat A. J. Nozik, Jr. J. C. Wood, and G. Haacke, “High resolution Mössbauer spectrum of Fe4N,” Solid State Commun. 7, 1677–1679 (1969).CrossRef A. J. Nozik, Jr. J. C. Wood, and G. Haacke, “High resolution Mössbauer spectrum of Fe4N,” Solid State Commun. 7, 1677–1679 (1969).CrossRef
20.
Zurück zum Zitat K. H. Eickel and W. Pitsch, “Magnetic properties of the hexagonal iron nitride ε-Fe3.2N,” Phys. Status Solidi 39, 121–129 (1970).CrossRef K. H. Eickel and W. Pitsch, “Magnetic properties of the hexagonal iron nitride ε-Fe3.2N,” Phys. Status Solidi 39, 121–129 (1970).CrossRef
21.
Zurück zum Zitat S. Kurian and N. S. Gajbhiye, “Magnetic and Mössbauer study of ε-FeyN (2 < y < 3) nanoparticles,” J. Nanopart. Res. 12, 1197–1209 (2010).CrossRef S. Kurian and N. S. Gajbhiye, “Magnetic and Mössbauer study of ε-FeyN (2 < y < 3) nanoparticles,” J. Nanopart. Res. 12, 1197–1209 (2010).CrossRef
22.
Zurück zum Zitat K. -J. Kim, K. Sumiyama, H. Onodera, and K. Suzuki, “Structure and magnetic properties of mechanically ground ε-Fe2.3N,” Jpn. J. Appl. Phys. 33, 6539–6541 (1994).CrossRef K. -J. Kim, K. Sumiyama, H. Onodera, and K. Suzuki, “Structure and magnetic properties of mechanically ground ε-Fe2.3N,” Jpn. J. Appl. Phys. 33, 6539–6541 (1994).CrossRef
23.
Zurück zum Zitat K. Sumiyama, H. Onodera, K. Suzuki, S. Ono, K. J. Kim, K. Gemma, and Y. Nishi, “Structure change in Fe4N powders by mechanical milling: a new aspect and correction of our previous reports,” J. Alloys Compd. 282, 158–163 (1999).CrossRef K. Sumiyama, H. Onodera, K. Suzuki, S. Ono, K. J. Kim, K. Gemma, and Y. Nishi, “Structure change in Fe4N powders by mechanical milling: a new aspect and correction of our previous reports,” J. Alloys Compd. 282, 158–163 (1999).CrossRef
24.
Zurück zum Zitat K. Oda, N. Kojima, K. Ito, H. Ino, and S. Kajiwara, “Interaction and arrangement of nitrogen and carbon atoms in fcc γ-iron,” Hyperfine Interact. 54, 853–859 (1990).CrossRef K. Oda, N. Kojima, K. Ito, H. Ino, and S. Kajiwara, “Interaction and arrangement of nitrogen and carbon atoms in fcc γ-iron,” Hyperfine Interact. 54, 853–859 (1990).CrossRef
25.
Zurück zum Zitat A. E. Vol, Structure and Properties of Binary Metallic Systems (Fizmatgiz, Moscow, 1962). A. E. Vol, Structure and Properties of Binary Metallic Systems (Fizmatgiz, Moscow, 1962).
26.
Zurück zum Zitat N. P. Lyakishev and O. A. Bannykh, “New structural steels with super-equilibrium nitrogen content,” Perspekt. Mater., No. 1, 73–82 (1995). N. P. Lyakishev and O. A. Bannykh, “New structural steels with super-equilibrium nitrogen content,” Perspekt. Mater., No. 1, 73–82 (1995).
27.
Zurück zum Zitat V. A. Shabashov, S Borisov, A Litvinov, V Sagaradze, A. E. Zamatovskii, K. A. Lyashkov, and N. F. Vil’danova, “Deformation-induced cyclic phase transitions of dissolution–precipitation of nitrides in surface layers of Fe–Cr–(Ni)–N alloys,” Phys. Met. Metallogr. 113, 489–503 (2012).CrossRef V. A. Shabashov, S Borisov, A Litvinov, V Sagaradze, A. E. Zamatovskii, K. A. Lyashkov, and N. F. Vil’danova, “Deformation-induced cyclic phase transitions of dissolution–precipitation of nitrides in surface layers of Fe–Cr–(Ni)–N alloys,” Phys. Met. Metallogr. 113, 489–503 (2012).CrossRef
Metadaten
Titel
Structure of the Surface Layers of Metastable Austenitic Stainless Steel Nitrided in Electron Beam Plasma
verfasst von
V. A. Shabashov
N. V. Gavrilov
K. A. Kozlov
A. V. Makarov
S. G. Titova
V. I. Voronin
Publikationsdatum
01.08.2018
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 8/2018
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X18080124

Weitere Artikel der Ausgabe 8/2018

Physics of Metals and Metallography 8/2018 Zur Ausgabe

STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Scandium-Based Hexagonal-Closed Packed Multi-Component Alloys

ELECTRICAL AND MAGNETIC PROPERTIES

Similarity of Hysteresis Quantities