Skip to main content
Erschienen in: Physics of Metals and Metallography 1/2019

01.01.2019 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Effects of Doping of Composite Ti–TiC Coatings with Transition and Valve Metals on Their Structure and Mechanical Properties

verfasst von: I. G. Zhevtun, P. S. Gordienko, Yu. N. Kul’chin, E. P. Subbotin, S. B. Yarusova, A. V. Golub

Erschienen in: Physics of Metals and Metallography | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study presents the results of an examination of the mechanical properties and structure of wear-resistant composite Ti–TiC-based coatings, which were formed on commercially pure titanium by electric-arc processing in an aqueous electrolyte, with transition and valve metals (Al, Ni, Cr, and Si) introduced into their composition. This study demonstrated that the change in mechanical properties can be attributed to the formation of the martensitic phase at the titanium–TiC interface, which is induced by hardening phenomena associated with electric-arc processing.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat B. B. Chechulin, S. S. Ushkov, I. N. Razuvaeva, and V. N. Gol’dfain, Titanium Alloys in Machine Building (Mashinostroenie, Leningrad, 1977) [in Russian]. B. B. Chechulin, S. S. Ushkov, I. N. Razuvaeva, and V. N. Gol’dfain, Titanium Alloys in Machine Building (Mashinostroenie, Leningrad, 1977) [in Russian].
2.
Zurück zum Zitat I. V. Gorynin, S. S. Ushkov, A. N. Khatuntsev, and N. I. Loshakova, Titanium Alloys for Marine Engineering (Politekhnika, St. Petersburg, 2007) [in Russian]. I. V. Gorynin, S. S. Ushkov, A. N. Khatuntsev, and N. I. Loshakova, Titanium Alloys for Marine Engineering (Politekhnika, St. Petersburg, 2007) [in Russian].
3.
Zurück zum Zitat U. Zwicker, Titan und Titanlegierungen (Springer, Berlin, 1974; Metallurgiya, Moscow, 1979). U. Zwicker, Titan und Titanlegierungen (Springer, Berlin, 1974; Metallurgiya, Moscow, 1979).
4.
Zurück zum Zitat M. Long and H. J. Rack, “Friction and surface behavior of selected titanium alloys during reciprocating-sliding motion,” Wear 249, 157–167 (2001).CrossRef M. Long and H. J. Rack, “Friction and surface behavior of selected titanium alloys during reciprocating-sliding motion,” Wear 249, 157–167 (2001).CrossRef
5.
Zurück zum Zitat X. X. Li, Y. Zhou, Y. X. Li, X. L. Ji, and S. Q. Wang, “Dry sliding wear characteristics of Ti–6.5 Al–3.5 Mo–1.5 Zr–0.3 Si alloy at various sliding speeds,” Metall. Mater. Trans. A 46, 4360–4368 (2015).CrossRef X. X. Li, Y. Zhou, Y. X. Li, X. L. Ji, and S. Q. Wang, “Dry sliding wear characteristics of Ti–6.5 Al–3.5 Mo–1.5 Zr–0.3 Si alloy at various sliding speeds,” Metall. Mater. Trans. A 46, 4360–4368 (2015).CrossRef
6.
Zurück zum Zitat K. Farokhzadeh and A. Edrisy, “Transition between mild and severe wear in titanium alloys,” Tribol. Int. 94, 98–111 (2016).CrossRef K. Farokhzadeh and A. Edrisy, “Transition between mild and severe wear in titanium alloys,” Tribol. Int. 94, 98–111 (2016).CrossRef
7.
Zurück zum Zitat E. Rabinovitz, “Frictional properties of titanium alloys,” Met. Prog. 65, 107–110 (1954). E. Rabinovitz, “Frictional properties of titanium alloys,” Met. Prog. 65, 107–110 (1954).
8.
Zurück zum Zitat K. G. Budinski, “Tribological properties of titanium alloys,” Wear 151, 203–217 (1991).CrossRef K. G. Budinski, “Tribological properties of titanium alloys,” Wear 151, 203–217 (1991).CrossRef
9.
Zurück zum Zitat Y. Yang, C. Zhang, Y. Wang, Y. Dai, and J. Luo, “Friction and wear performance of titanium alloy against tungsten carbide lubricated with phosphate ester,” Tribol. Int. 95, 27–34 (2016).CrossRef Y. Yang, C. Zhang, Y. Wang, Y. Dai, and J. Luo, “Friction and wear performance of titanium alloy against tungsten carbide lubricated with phosphate ester,” Tribol. Int. 95, 27–34 (2016).CrossRef
10.
Zurück zum Zitat J. Umeda, B. Fugetsu, E. Nishida, H. Miyaji, and K. Kondoh, “Friction behavior of network-structured CNT coating on pure titanium plate,” Appl. Surf. Sci. 357, 721–727 (2015).CrossRef J. Umeda, B. Fugetsu, E. Nishida, H. Miyaji, and K. Kondoh, “Friction behavior of network-structured CNT coating on pure titanium plate,” Appl. Surf. Sci. 357, 721–727 (2015).CrossRef
11.
Zurück zum Zitat I. S. Kaptyug and V. I. Syshchikov, “Effect of alloying on frictional properties of titanium,” Metalloved. Term. Obrab. Met. No. 4, 22–27 (1959). I. S. Kaptyug and V. I. Syshchikov, “Effect of alloying on frictional properties of titanium,” Metalloved. Term. Obrab. Met. No. 4, 22–27 (1959).
12.
Zurück zum Zitat S. Wang, Z. Ma, Z. Liao, J. Song, K. Yang, and W. Liu, “Study on improved tribological properties by alloying copper to CP–Ti and Ti–6Al–4V alloy,” Mater. Sci. Eng., C 57, 123–132 (2015).CrossRef S. Wang, Z. Ma, Z. Liao, J. Song, K. Yang, and W. Liu, “Study on improved tribological properties by alloying copper to CP–Ti and Ti–6Al–4V alloy,” Mater. Sci. Eng., C 57, 123–132 (2015).CrossRef
13.
Zurück zum Zitat F. D. Lai, T. I. Wu, and J. K. Wu, “Surface modification of Ti–6AL–4V alloy by salt cyaniding and nitriding,” Surf. Coat. Technol. 58, 79–81 (1993).CrossRef F. D. Lai, T. I. Wu, and J. K. Wu, “Surface modification of Ti–6AL–4V alloy by salt cyaniding and nitriding,” Surf. Coat. Technol. 58, 79–81 (1993).CrossRef
14.
Zurück zum Zitat S. S. Ushkov and N. I. Loshakova, “Antifriction oxidizing of titanium alloys,” Metalloobrabotka 8 (2), 15–21 (2002). S. S. Ushkov and N. I. Loshakova, “Antifriction oxidizing of titanium alloys,” Metalloobrabotka 8 (2), 15–21 (2002).
15.
Zurück zum Zitat A. I. Mikhailyuk and R. P. Zhitaru, “Features of the mechanism of plastic deformation of electrospark coatings and ways to increase their strength characteristics upon friction,” Elektron. Obrab. Mater., No. 5, 49–56 (2008) A. I. Mikhailyuk and R. P. Zhitaru, “Features of the mechanism of plastic deformation of electrospark coatings and ways to increase their strength characteristics upon friction,” Elektron. Obrab. Mater., No. 5, 49–56 (2008)
16.
Zurück zum Zitat S. A. Kumar, S. G. S. Raman, T. S. N. S. Narayanan, and R. Gnanamoorthy, “Influence of counterbody material on fretting wear behavior of surface mechanical attrition treated Ti–6Al–4V,” Tribol. Int. 57, 107–114 (2013).CrossRef S. A. Kumar, S. G. S. Raman, T. S. N. S. Narayanan, and R. Gnanamoorthy, “Influence of counterbody material on fretting wear behavior of surface mechanical attrition treated Ti–6Al–4V,” Tribol. Int. 57, 107–114 (2013).CrossRef
17.
Zurück zum Zitat K. Aniołek, M. Kupka, A. Barylski, and G. Dercz, “Mechanical and tribological properties of oxide layers obtained on titanium in the thermal oxidation process,” Appl. Surf. Sci. 357, 1419–1426 (2015).CrossRef K. Aniołek, M. Kupka, A. Barylski, and G. Dercz, “Mechanical and tribological properties of oxide layers obtained on titanium in the thermal oxidation process,” Appl. Surf. Sci. 357, 1419–1426 (2015).CrossRef
18.
Zurück zum Zitat J. D. Ayers, “Wear behavior of carbide-injected titanium and aluminum alloys,” Wear 97, 249–266 (1984).CrossRef J. D. Ayers, “Wear behavior of carbide-injected titanium and aluminum alloys,” Wear 97, 249–266 (1984).CrossRef
19.
Zurück zum Zitat V. G. Ivanov, S. V. Korkosh, P. S. Gordienko, and I. G. Zhevtun, “Antifriction properties of MDO coatings on titanium alloy 3M,” Metalloobrabotka 67, 24–27 (2012) V. G. Ivanov, S. V. Korkosh, P. S. Gordienko, and I. G. Zhevtun, “Antifriction properties of MDO coatings on titanium alloy 3M,” Metalloobrabotka 67, 24–27 (2012)
20.
Zurück zum Zitat A. E. Kudryashov, Zh. V. Eremeeva, E. A. Levashov, V. Yu. Lopatin, A. V. Sevost’yanova, and E. I. Zamulaeva, “On the use of carbon-containing electrode materials in the technology of electric spark alloying. Part 1. Features of the formation of coatings for electrospark processing of titanium alloy OT4-1,” Elektron. Obrab. Mater. 53 (6), 27–37 (2017). A. E. Kudryashov, Zh. V. Eremeeva, E. A. Levashov, V. Yu. Lopatin, A. V. Sevost’yanova, and E. I. Zamulaeva, “On the use of carbon-containing electrode materials in the technology of electric spark alloying. Part 1. Features of the formation of coatings for electrospark processing of titanium alloy OT4-1,” Elektron. Obrab. Mater. 53 (6), 27–37 (2017).
21.
Zurück zum Zitat P. S. Gordienko, V. A. Dostovalov, I. G. Zhevtun, U. V. Kharchenko, N. N. Barinov, T. A. Kaidalova, and D. V. Dostovalov, “ Formation of carbide phases on the cathodically polarized surface of titanium,” Korroziya: Materialy, Zashchita, No. 7, 1–5 (2009). P. S. Gordienko, V. A. Dostovalov, I. G. Zhevtun, U. V. Kharchenko, N. N. Barinov, T. A. Kaidalova, and D. V. Dostovalov, “ Formation of carbide phases on the cathodically polarized surface of titanium,” Korroziya: Materialy, Zashchita, No. 7, 1–5 (2009).
22.
Zurück zum Zitat I. G. Zhevtun, P. S. Gordienko, D. V. Mashtalyar, A. V. Puz’, and A. A. Yudakov,“ Antifriction properties of a carbide-containing layer on a titanium alloy VT1-0,” Elektron. Obrab. Mater. 51 (1), 114–117 (2015). I. G. Zhevtun, P. S. Gordienko, D. V. Mashtalyar, A. V. Puz’, and A. A. Yudakov,“ Antifriction properties of a carbide-containing layer on a titanium alloy VT1-0,” Elektron. Obrab. Mater. 51 (1), 114–117 (2015).
23.
Zurück zum Zitat Z. F. Zhang, Z. M. Sun, and H. Hashimoto, “Low temperature synthesis of Ti3SiC2 from Ti/SiC/C powders,” Mater. Sci. Technol. 20, 1252–1256 (2004).CrossRef Z. F. Zhang, Z. M. Sun, and H. Hashimoto, “Low temperature synthesis of Ti3SiC2 from Ti/SiC/C powders,” Mater. Sci. Technol. 20, 1252–1256 (2004).CrossRef
24.
Zurück zum Zitat A. S. Novikov, A. G. Paikin, and V. A. Shulov, “Obtaining, properties and application of MAX materials based on titanium,” Uprochn. Tekhnol. Pokryt., No. 11, 24–34 (2006). A. S. Novikov, A. G. Paikin, and V. A. Shulov, “Obtaining, properties and application of MAX materials based on titanium,” Uprochn. Tekhnol. Pokryt., No. 11, 24–34 (2006).
25.
Zurück zum Zitat K. Shirato, D. Chen, M. W. Barsoum, T. El-Raghy, and R. O. Ritchie, “High-temperature cyclic fatigue-crack growth in monolithic Ti3SiC2 ceramics,” in Fatigue and Fracture Behavior of High Temperature Materials, Ed. by Peter K. Liaw (TMS, Warrendale, PA, 2000), pp. 71–75. K. Shirato, D. Chen, M. W. Barsoum, T. El-Raghy, and R. O. Ritchie, “High-temperature cyclic fatigue-crack growth in monolithic Ti3SiC2 ceramics,” in Fatigue and Fracture Behavior of High Temperature Materials, Ed. by Peter K. Liaw (TMS, Warrendale, PA, 2000), pp. 71–75.
26.
Zurück zum Zitat M. N. Kachenyuk, “Obtaining a composite material based on titanium carbosilicide and studying its wear resistance,” Izv. Vuzov: Poroshk. Metall Funkts. Pokryt., No. 1, 23–27 (2010). M. N. Kachenyuk, “Obtaining a composite material based on titanium carbosilicide and studying its wear resistance,” Izv. Vuzov: Poroshk. Metall Funkts. Pokryt., No. 1, 23–27 (2010).
27.
Zurück zum Zitat A. V. Andreev, A. D. Korotaev, I. Yu. Litovchenko, A. N. Tyumentsev, and D. P. Borisov, “Microstructure and tribological properties of nanocomposite coatings based on amorphous carbon,”, Fiz. Mezomekh. 18 (1), 73–83 (2015). A. V. Andreev, A. D. Korotaev, I. Yu. Litovchenko, A. N. Tyumentsev, and D. P. Borisov, “Microstructure and tribological properties of nanocomposite coatings based on amorphous carbon,”, Fiz. Mezomekh. 18 (1), 73–83 (2015).
28.
Zurück zum Zitat W. J. Engel, “Bonding investigations of titanium carbide with various elements,” NACA. Tech. Note No. 2187 (1950). W. J. Engel, “Bonding investigations of titanium carbide with various elements,” NACA. Tech. Note No. 2187 (1950).
29.
Zurück zum Zitat E. M. Trent, A. Carter, and J. Bateman, “High temperature alloys based on titanium carbide,” Metall. Manchester 42, 111–115 (1950). E. M. Trent, A. Carter, and J. Bateman, “High temperature alloys based on titanium carbide,” Metall. Manchester 42, 111–115 (1950).
30.
Zurück zum Zitat GOST 6996-66 “Welded joints. Methods for determining mechanical properties”. GOST 6996-66 “Welded joints. Methods for determining mechanical properties”.
31.
Zurück zum Zitat B. K. Vul’f, Heat Treatment of Titanium Alloys (Metallurgiya, Moscow, 1969) [in Russian]. B. K. Vul’f, Heat Treatment of Titanium Alloys (Metallurgiya, Moscow, 1969) [in Russian].
32.
Zurück zum Zitat K. V. S. Srinadh, N. Singh, and V. Singh, “Role of Ti3Al/silicides on tensile properties of Timetal 834 at various temperatures,” Bull. Mater. Sci. 30, 595–600 (2007).CrossRef K. V. S. Srinadh, N. Singh, and V. Singh, “Role of Ti3Al/silicides on tensile properties of Timetal 834 at various temperatures,” Bull. Mater. Sci. 30, 595–600 (2007).CrossRef
33.
Zurück zum Zitat I. G. Zhevtun, P. S. Gordienko, and T. A. Kaidalova, “Acid etching of the Ti-TiC composite to reveal its microstructure,” Materialovedenie 206 (5), 41–45 (2014). I. G. Zhevtun, P. S. Gordienko, and T. A. Kaidalova, “Acid etching of the Ti-TiC composite to reveal its microstructure,” Materialovedenie 206 (5), 41–45 (2014).
34.
Zurück zum Zitat H. A. Davies, “Rapid quenching and formation of metallic glasses,” in Rapidly Quenched Metals III, edited by B. Cantor (Metals Society, London, 1978), Vol. 1, pp. 1–21. H. A. Davies, “Rapid quenching and formation of metallic glasses,” in Rapidly Quenched Metals III, edited by B. Cantor (Metals Society, London, 1978), Vol. 1, pp. 1–21.
35.
Zurück zum Zitat S. G. Glazunov and K. M. Borzetsovskaya, Powder Metallurgy of Titanium Alloys (Metallurgiya, Moscow, 1989) [in Russian]. S. G. Glazunov and K. M. Borzetsovskaya, Powder Metallurgy of Titanium Alloys (Metallurgiya, Moscow, 1989) [in Russian].
36.
Zurück zum Zitat S. P. Belov, M. Ya. Brun, S. G. Glazunov, A. A. Il’in, B. A. Kolachev, M. Yu. Kollerov, O. S. Korobov, V. S. Lyasotskaya, A. V. Mal’kov, V. N. Moiseev, A. B. Notkin, N. Z. Pertsovskii, I. S. Pol’kin, N. M. Semenova, A. I. Khorev, M. A. Khorev, and G. V. Shakhanova, Titanium Alloys. Metal Science of Its Alloys, Ed. by B. A. Kolachev and S. G. Glazunov (Metallurgiya, Moscow, 1992) [in Russian]. S. P. Belov, M. Ya. Brun, S. G. Glazunov, A. A. Il’in, B. A. Kolachev, M. Yu. Kollerov, O. S. Korobov, V. S. Lyasotskaya, A. V. Mal’kov, V. N. Moiseev, A. B. Notkin, N. Z. Pertsovskii, I. S. Pol’kin, N. M. Semenova, A. I. Khorev, M. A. Khorev, and G. V. Shakhanova, Titanium Alloys. Metal Science of Its Alloys, Ed. by B. A. Kolachev and S. G. Glazunov (Metallurgiya, Moscow, 1992) [in Russian].
37.
Zurück zum Zitat I. G. Zhevtun, P. S. Gordienko, S. B. Yarusova, V. E. Silant’ev, and A. A. Yudakov, “Producing a microporous structure on titanium alloys by means of plasma surface treatment,” Fizikokhim. Poverkhn. Zashchita Mater. 53 (1), 91–95 (2017). I. G. Zhevtun, P. S. Gordienko, S. B. Yarusova, V. E. Silant’ev, and A. A. Yudakov, “Producing a microporous structure on titanium alloys by means of plasma surface treatment,” Fizikokhim. Poverkhn. Zashchita Mater. 53 (1), 91–95 (2017).
38.
Zurück zum Zitat I. G. Zhevtun, P. S. Gordienko, S. B. Yarusova, Yu. N. Kul’chin, E. P. Subbotin, D. S. Pivovarov, and D. S. Yatsko, “Micro- and nanoporous structure formed on the titanium surface by laser treatment,” Phys. Met. Metallogr. 119, 491–496 (2018).CrossRef I. G. Zhevtun, P. S. Gordienko, S. B. Yarusova, Yu. N. Kul’chin, E. P. Subbotin, D. S. Pivovarov, and D. S. Yatsko, “Micro- and nanoporous structure formed on the titanium surface by laser treatment,” Phys. Met. Metallogr. 119, 491–496 (2018).CrossRef
Metadaten
Titel
Effects of Doping of Composite Ti–TiC Coatings with Transition and Valve Metals on Their Structure and Mechanical Properties
verfasst von
I. G. Zhevtun
P. S. Gordienko
Yu. N. Kul’chin
E. P. Subbotin
S. B. Yarusova
A. V. Golub
Publikationsdatum
01.01.2019
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 1/2019
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X18100150

Weitere Artikel der Ausgabe 1/2019

Physics of Metals and Metallography 1/2019 Zur Ausgabe

ELECTRICAL AND MAGNETIC PROPERTIES

Study of Dilute CuEr Alloys by the EPR Method

STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Structural Vacancy Model of Grain Boundaries