Skip to main content
Erschienen in: Physics of Metals and Metallography 4/2019

01.04.2019 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Prediction of the Phase Composition of High-Entropy Аlloys Based on Cr–Nb–Ti–V–Zr Using the Calphad Method

verfasst von: I. I. Gorbachev, V. V Popov, A. Katz-Demyanetz, V. Popov, E. Eshed

Erschienen in: Physics of Metals and Metallography | Ausgabe 4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Based on the CALPHAD method, a description of the Cr–Nb–Ti–V–Zr alloy system was formulated and temperature dependences of changes in the phase composition of high-entropy CrxNbTiVZr alloys (for x = 0.5, 0.75, 1, and 1.25) were calculated.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat V. F. Gorban’, N. A. Krapivka, and S. A. Firstov, “High-entropy alloys: Interrelations between electron concentration, phase composition, lattice parameter, and properties,” Phys. Met. Metallogr. 118, 970–981 (2017).CrossRef V. F. Gorban’, N. A. Krapivka, and S. A. Firstov, “High-entropy alloys: Interrelations between electron concentration, phase composition, lattice parameter, and properties,” Phys. Met. Metallogr. 118, 970–981 (2017).CrossRef
2.
Zurück zum Zitat V. F. Gorban, N. A. Krapivka, S. A. Firstov, and D. V. Kurilenko, “Role of various parameters in the formation of the physicomechanical properties of high-entropy alloys with bcc lattices,” Phys. Met. Metallogr. 119, 477–481 (2018).CrossRef V. F. Gorban, N. A. Krapivka, S. A. Firstov, and D. V. Kurilenko, “Role of various parameters in the formation of the physicomechanical properties of high-entropy alloys with bcc lattices,” Phys. Met. Metallogr. 119, 477–481 (2018).CrossRef
3.
Zurück zum Zitat N. I. Kourov, V. G. Pushin, A. V. Korolev, Yu. V. Knyazev, M. V. Ivchenko, and Yu. M. Ustyugov, “Peculiar features of physical properties of the rapidly quenched AlCrFeCoNiCu high-entropy alloy,” J. Alloys Compd. 636, 304–309 (2015).CrossRef N. I. Kourov, V. G. Pushin, A. V. Korolev, Yu. V. Knyazev, M. V. Ivchenko, and Yu. M. Ustyugov, “Peculiar features of physical properties of the rapidly quenched AlCrFeCoNiCu high-entropy alloy,” J. Alloys Compd. 636, 304–309 (2015).CrossRef
4.
Zurück zum Zitat M. V. Ivchenko, V. G. Pushin, A. N. Uksusnikov, N. Wanderka, and N. I. Kourov, “Specific features of cast high-entropy AlCrFeCoNiCu alloys produced by ultrarapid quenching from the melt,” Phys. Met. Metallogr. 114, 503–513 (2013).CrossRef M. V. Ivchenko, V. G. Pushin, A. N. Uksusnikov, N. Wanderka, and N. I. Kourov, “Specific features of cast high-entropy AlCrFeCoNiCu alloys produced by ultrarapid quenching from the melt,” Phys. Met. Metallogr. 114, 503–513 (2013).CrossRef
5.
Zurück zum Zitat M. V. Ivchenko, V. G. Pushin, A. N. Uksusnikov, and N. Wanderka, “Microstructure features of high-entropy equiatomic cast AlCrFeCoNiCu alloys,” Phys. Met. Metallogr. 114, 514–520 (2013).CrossRef M. V. Ivchenko, V. G. Pushin, A. N. Uksusnikov, and N. Wanderka, “Microstructure features of high-entropy equiatomic cast AlCrFeCoNiCu alloys,” Phys. Met. Metallogr. 114, 514–520 (2013).CrossRef
6.
Zurück zum Zitat O. N. Senkov, G. B. Wilks, J. M. Scott, and D. B. Miracle, “Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys,” Intermetallics 19, 698–706 (2011).CrossRef O. N. Senkov, G. B. Wilks, J. M. Scott, and D. B. Miracle, “Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys,” Intermetallics 19, 698–706 (2011).CrossRef
7.
Zurück zum Zitat O. N. Senkov, C. Woodward, and D. B. Miracle, “Microstructure of aluminum-containing refractory high-entropy alloys,” JOM 66, 2030–2042 (2014).CrossRef O. N. Senkov, C. Woodward, and D. B. Miracle, “Microstructure of aluminum-containing refractory high-entropy alloys,” JOM 66, 2030–2042 (2014).CrossRef
8.
Zurück zum Zitat C. Li, Y. Xue, M. Hua, T. Cao, L. Ma, and L. Wang, “Microstructure and mechanical properties of AlxSi0.2CrFeCoNiCu1 – x high entropy alloys,” Mater. Des. 90, 601–609 (2016).CrossRef C. Li, Y. Xue, M. Hua, T. Cao, L. Ma, and L. Wang, “Microstructure and mechanical properties of AlxSi0.2CrFeCoNiCu1 – x high entropy alloys,” Mater. Des. 90, 601–609 (2016).CrossRef
9.
Zurück zum Zitat E. Eshed, N. Larianovsky, A. Kovalevsky, V. Popov, Jr., I. Gorbachev, V. Popov, and A. Katz-Demyanetz, “Microstructural evolution and phase formation in 2nd-generation refractory-based high entropy alloys,” Materials 11, 175–187 (2018).CrossRef E. Eshed, N. Larianovsky, A. Kovalevsky, V. Popov, Jr., I. Gorbachev, V. Popov, and A. Katz-Demyanetz, “Microstructural evolution and phase formation in 2nd-generation refractory-based high entropy alloys,” Materials 11, 175–187 (2018).CrossRef
10.
Zurück zum Zitat F. Zhang, C. Zhang, S. L. Chen, J. Zhu, W. S. Cao, and U. R. Kattner, “An understanding of high entropy alloys from phase diagram calculations, “CALPHAD 45, 1–10 (2014).CrossRef F. Zhang, C. Zhang, S. L. Chen, J. Zhu, W. S. Cao, and U. R. Kattner, “An understanding of high entropy alloys from phase diagram calculations, “CALPHAD 45, 1–10 (2014).CrossRef
11.
Zurück zum Zitat H. L. Lukas, S. G. Fries, and B. Sundman, Computational Thermodynamics: The Calphad Method (Cambridge University Press, 2007),CrossRef H. L. Lukas, S. G. Fries, and B. Sundman, Computational Thermodynamics: The Calphad Method (Cambridge University Press, 2007),CrossRef
12.
Zurück zum Zitat M. Hillert and L.-I. Staffonsson, “The regular solution model for stoichiometric phases and ionic melts,” Acta Chem. Scand. 24, 3618–3626 (1970).CrossRef M. Hillert and L.-I. Staffonsson, “The regular solution model for stoichiometric phases and ionic melts,” Acta Chem. Scand. 24, 3618–3626 (1970).CrossRef
13.
Zurück zum Zitat B. Sundman and J. Agren, “A regular solution model for phase with several components and sublattices, suitable for computer applications,” J. Phys. Chem. Solids 42, 297–301 (1981).CrossRef B. Sundman and J. Agren, “A regular solution model for phase with several components and sublattices, suitable for computer applications,” J. Phys. Chem. Solids 42, 297–301 (1981).CrossRef
14.
Zurück zum Zitat A. T. Dinsdale, “SGTE data for pure elements,” CALPHAD 15, 317–425 (1991).CrossRef A. T. Dinsdale, “SGTE data for pure elements,” CALPHAD 15, 317–425 (1991).CrossRef
15.
Zurück zum Zitat J. Y. Lee, J. H. Kim, S. I. Park, and H. M. Lee, “Phase equilibrium of the Ti–Cr–V ternary system in the non-burning β-Ti alloy region,” J. Alloys Compd. 291, 229–238 (1999).CrossRef J. Y. Lee, J. H. Kim, S. I. Park, and H. M. Lee, “Phase equilibrium of the Ti–Cr–V ternary system in the non-burning β-Ti alloy region,” J. Alloys Compd. 291, 229–238 (1999).CrossRef
16.
Zurück zum Zitat J. Pavlů, J. Vřešt’ál, and M. Šob, “Thermodynamic modeling of Laves phases in the Cr–Hf and Cr–Ti systems: Reassessment using first-principles results,” CALPHAD 34, 215–221 (2010).CrossRef J. Pavlů, J. Vřešt’ál, and M. Šob, “Thermodynamic modeling of Laves phases in the Cr–Hf and Cr–Ti systems: Reassessment using first-principles results,” CALPHAD 34, 215–221 (2010).CrossRef
17.
Zurück zum Zitat W. D. Zhuang, J. Y. Shen, Y. Q. Liu, L. Ling, S. L. Shang, Y. Du, and J. C. Schuster, “Thermodynamic optimization of the Cr–Ti system,” Z. Metallkd. 91, 121–127 (2000). W. D. Zhuang, J. Y. Shen, Y. Q. Liu, L. Ling, S. L. Shang, Y. Du, and J. C. Schuster, “Thermodynamic optimization of the Cr–Ti system,” Z. Metallkd. 91, 121–127 (2000).
18.
Zurück zum Zitat D. M. Cupid, M. J. Kriegel, O. Fabrichnaya, F. Ebrahimi, and H. J. Seifert, “Thermodynamic assessment of the Cr–Ti and first assessment of the Al–Cr–Ti systems,” Intermetallics 19, 1222–1235 (2011).CrossRef D. M. Cupid, M. J. Kriegel, O. Fabrichnaya, F. Ebrahimi, and H. J. Seifert, “Thermodynamic assessment of the Cr–Ti and first assessment of the Al–Cr–Ti systems,” Intermetallics 19, 1222–1235 (2011).CrossRef
19.
Zurück zum Zitat N. Saunders, “System Cr–Ti,” In Thermochemical Database for Light Metal Alloys (Volume 2), Ed. by A. Ansara, T. Dinsdale, and M. H. Rand (Office for Official Publications of the European Communities, Luxembourg, 1998). N. Saunders, “System Cr–Ti,” In Thermochemical Database for Light Metal Alloys (Volume 2), Ed. by A. Ansara, T. Dinsdale, and M. H. Rand (Office for Official Publications of the European Communities, Luxembourg, 1998).
20.
Zurück zum Zitat G. Ghosh, “Thermodynamic and kinetic modeling of the Cr–Ti–V system,” J. Phase Equilib. 23, 310–328 (2002).CrossRef G. Ghosh, “Thermodynamic and kinetic modeling of the Cr–Ti–V system,” J. Phase Equilib. 23, 310–328 (2002).CrossRef
21.
Zurück zum Zitat B.-J. Lee and D. N. Lee, “A thermodynamic evaluation of the Fe–Cr–V–C system,” J. Phase Equilib. 13, 349–364 (1992).CrossRef B.-J. Lee and D. N. Lee, “A thermodynamic evaluation of the Fe–Cr–V–C system,” J. Phase Equilib. 13, 349–364 (1992).CrossRef
22.
Zurück zum Zitat C. Guo, C. Li, X. Zheng, and Zh. Du, “Thermodynamic modeling of the Fe–Ti–V system,” CALPHAD 38, 155–160 (2012).CrossRef C. Guo, C. Li, X. Zheng, and Zh. Du, “Thermodynamic modeling of the Fe–Ti–V system,” CALPHAD 38, 155–160 (2012).CrossRef
23.
Zurück zum Zitat J. Cui, C. Guo, L. Zou, Ch. Li, and Zh. Du, “Experimental investigation and thermodynamic modeling of the Ti–V–Zr system,” CALPHAD 55 (Part 2), 189–198 (2016).CrossRef J. Cui, C. Guo, L. Zou, Ch. Li, and Zh. Du, “Experimental investigation and thermodynamic modeling of the Ti–V–Zr system,” CALPHAD 55 (Part 2), 189–198 (2016).CrossRef
24.
Zurück zum Zitat C. Servant, “Thermodynamic assessments of the phase diagrams of the hafnium–vanadium and vanadium–zirconium systems,” J. Phase Equilib. Diffus. 26, 39–49 (2005).CrossRef C. Servant, “Thermodynamic assessments of the phase diagrams of the hafnium–vanadium and vanadium–zirconium systems,” J. Phase Equilib. Diffus. 26, 39–49 (2005).CrossRef
25.
Zurück zum Zitat X.-S. Zhao, G.-H. Yuan, M.-Y. Yao, Q. Yue, and J.‑Y. Shen, “First-principles calculations and thermodynamic modeling of the V–Zr system,” CALPHAD 36, 163–168 (2012).CrossRef X.-S. Zhao, G.-H. Yuan, M.-Y. Yao, Q. Yue, and J.‑Y. Shen, “First-principles calculations and thermodynamic modeling of the V–Zr system,” CALPHAD 36, 163–168 (2012).CrossRef
26.
Zurück zum Zitat H.-J. Lu, W.-B. Wang, N. Zou, J.-Y. Shen, X.-G. Lu, and Y.-L. He, “Thermodynamic modeling of Cr–Nb and Zr–Cr with extension to the ternary Zr–Nb–Cr system,” CALPHAD 50, 134–143 (2015).CrossRef H.-J. Lu, W.-B. Wang, N. Zou, J.-Y. Shen, X.-G. Lu, and Y.-L. He, “Thermodynamic modeling of Cr–Nb and Zr–Cr with extension to the ternary Zr–Nb–Cr system,” CALPHAD 50, 134–143 (2015).CrossRef
27.
Zurück zum Zitat C. Schmetterer, A. Khvan, A. Jacob, B. Hallstedt, and T. Markus, “A new theoretical study of the Cr–Nb system,” J. Phase Equilib. Diffus. 35, 434–444 (2014).CrossRef C. Schmetterer, A. Khvan, A. Jacob, B. Hallstedt, and T. Markus, “A new theoretical study of the Cr–Nb system,” J. Phase Equilib. Diffus. 35, 434–444 (2014).CrossRef
28.
Zurück zum Zitat Y. Peng, P. Zhou, M. Bu, W. Zhang, and Y. Du, “A thermodynamic evaluation of the C–Cr–Nb system,” CALPHAD 53, 10–19 (2016).CrossRef Y. Peng, P. Zhou, M. Bu, W. Zhang, and Y. Du, “A thermodynamic evaluation of the C–Cr–Nb system,” CALPHAD 53, 10–19 (2016).CrossRef
29.
Zurück zum Zitat J. Pavlů, J. Vřešt’ál, and M. Šob, “Re-modeling of Laves phases in the Cr–Nb and Cr–Ta systems using first-principles results,” CALPHAD 33, 179–186 (2009).CrossRef J. Pavlů, J. Vřešt’ál, and M. Šob, “Re-modeling of Laves phases in the Cr–Nb and Cr–Ta systems using first-principles results,” CALPHAD 33, 179–186 (2009).CrossRef
30.
Zurück zum Zitat J. G. Costa Neto, S. G. Fries, and H. L. Lukas, “Thermodynamic optimisation of the Nb–Cr system,” CALPHAD 17, 219–228 (1993).CrossRef J. G. Costa Neto, S. G. Fries, and H. L. Lukas, “Thermodynamic optimisation of the Nb–Cr system,” CALPHAD 17, 219–228 (1993).CrossRef
31.
Zurück zum Zitat A. Fernandez-Guillermet, “Thermodynamic analysis of the stable phases in the Zr–Nb system and calculation of the phase diagram,” Z. Metallkd. 82, 478–487 (1991). A. Fernandez-Guillermet, “Thermodynamic analysis of the stable phases in the Zr–Nb system and calculation of the phase diagram,” Z. Metallkd. 82, 478–487 (1991).
32.
Zurück zum Zitat J. Pavlů, J. Vřešt’ál, and M. Šob, “Stability of Laves phases in the Cr–Zr system,” CALPHAD 33, 382–387 (2009).CrossRef J. Pavlů, J. Vřešt’ál, and M. Šob, “Stability of Laves phases in the Cr–Zr system,” CALPHAD 33, 382–387 (2009).CrossRef
33.
Zurück zum Zitat Y. Yang, L. Tan, H. Bei, and J. T. Busby, “Thermodynamic modeling and experimental study of the Fe–Cr–Zr system,” J. Nucl. Mater. 441, 190–202 (2013).CrossRef Y. Yang, L. Tan, H. Bei, and J. T. Busby, “Thermodynamic modeling and experimental study of the Fe–Cr–Zr system,” J. Nucl. Mater. 441, 190–202 (2013).CrossRef
34.
Zurück zum Zitat K. C. Hari Kumar, P. Wollants, and L. Delaey, “Thermodynamic calculation of Nb–Ti–V phase diagram,” CALPHAD 18, 71–79 (1994).CrossRef K. C. Hari Kumar, P. Wollants, and L. Delaey, “Thermodynamic calculation of Nb–Ti–V phase diagram,” CALPHAD 18, 71–79 (1994).CrossRef
35.
Zurück zum Zitat N. Saunders, “System Nb–Ti,” in Thermochemical Database for Light Metal Alloys (Volume 2), Ed. by A. Ansara, T. Dinsdale, and M. H. Rand (Office for Official Publications of the European Communities, Luxembourg, 1998). N. Saunders, “System Nb–Ti,” in Thermochemical Database for Light Metal Alloys (Volume 2), Ed. by A. Ansara, T. Dinsdale, and M. H. Rand (Office for Official Publications of the European Communities, Luxembourg, 1998).
36.
Zurück zum Zitat B.-J. Lee, “Thermodynamic assessment of the Fe–Nb–Ti–C–N system,” Metall. Mater. Trans. A 32A, 2423–2439 (2001).CrossRef B.-J. Lee, “Thermodynamic assessment of the Fe–Nb–Ti–C–N system,” Metall. Mater. Trans. A 32A, 2423–2439 (2001).CrossRef
37.
Zurück zum Zitat Y. Zhang, H. Liu, and Zh. Jin, “Thermodynamic assessment of the Nb–Ti system,” CALPHAD 25, 305–317 (2001).CrossRef Y. Zhang, H. Liu, and Zh. Jin, “Thermodynamic assessment of the Nb–Ti system,” CALPHAD 25, 305–317 (2001).CrossRef
38.
Zurück zum Zitat H. Liang and Y. A. Chang, “Thermodynamic modeling of the Nb–Si–Ti ternary system,” Intermetallics 7, 561–570 (1999).CrossRef H. Liang and Y. A. Chang, “Thermodynamic modeling of the Nb–Si–Ti ternary system,” Intermetallics 7, 561–570 (1999).CrossRef
39.
Zurück zum Zitat A. V. Khvan, K. Chang, and B. Hallstedt, “Thermodynamic assessment of the Fe–Nb–V system,” CALPHAD 43, 143–148 (2013).CrossRef A. V. Khvan, K. Chang, and B. Hallstedt, “Thermodynamic assessment of the Fe–Nb–V system,” CALPHAD 43, 143–148 (2013).CrossRef
Metadaten
Titel
Prediction of the Phase Composition of High-Entropy Аlloys Based on Cr–Nb–Ti–V–Zr Using the Calphad Method
verfasst von
I. I. Gorbachev
V. V Popov
A. Katz-Demyanetz
V. Popov
E. Eshed
Publikationsdatum
01.04.2019
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 4/2019
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X19040069

Weitere Artikel der Ausgabe 4/2019

Physics of Metals and Metallography 4/2019 Zur Ausgabe