Skip to main content
Erschienen in: Physics of Metals and Metallography 5/2020

01.05.2020 | STRENGTH AND PLASTICITY

Effect of Impurities on the Phase Composition and Properties of a Wrought Al–6% Cu–4.05% Er Alloy

verfasst von: S. M. Amer, R. Yu. Barkov, A. V. Pozdniakov

Erschienen in: Physics of Metals and Metallography | Ausgabe 5/2020

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effect of impurities on the phase composition and properties of a wrought alloy of the Al–Cu–Er system has been investigated in this work. According to the results of the scanning electron microscopy and X-ray diffraction analysis, Al8Cu4Er, Al3Er, and Al3Er2Si2 particles of phases of crystallization origin are present in the structure of the alloy. After annealing at 605°C, the Al8Cu4Er and Al3Er phases have compact morphology close to spherical with a maximum size of particles up to 3 μm, and the Al3Er2Si2 phase has a needle shape with a length of up to 15 μm. No needle-shaped particles have been detected in the structure after rolling, which indicates the fragmentation of the Al3Er2Si2 phase. Iron and silicon impurities do not have a significant effect on the alloy recrystallization, but somewhat increase its hardness after annealing at low temperatures (to 250°C). After annealing at 100 and 150°C, the investigated alloy shows a sufficiently high level of mechanical properties: according to the results of tests for uniaxial tension, its proof stress is 277–310 MPa and the ultimate strength is 308–350 MPa, which is 10–30 MPa more than that in the alloy without impurities.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat I. I. Novikov, Hot Brittleness Resistance of Non-Ferrous Metals and Alloys (Nauka, Moscow, 1966) [in Russian]. I. I. Novikov, Hot Brittleness Resistance of Non-Ferrous Metals and Alloys (Nauka, Moscow, 1966) [in Russian].
2.
Zurück zum Zitat D. G. Eskin, Suyitno, and L. Katgerman, “Mechanical properties in the semi-solid state and hot tearing of aluminium alloys,” Prog. Mater. Sci. 49, 629–711 (2004).CrossRef D. G. Eskin, Suyitno, and L. Katgerman, “Mechanical properties in the semi-solid state and hot tearing of aluminium alloys,” Prog. Mater. Sci. 49, 629–711 (2004).CrossRef
3.
Zurück zum Zitat V. S. Zolotorevsky, N. A. Belov, and M. V. Glazoff, Casting Aluminum Alloys (Alcoa Technical Center, PA, 2007).CrossRef V. S. Zolotorevsky, N. A. Belov, and M. V. Glazoff, Casting Aluminum Alloys (Alcoa Technical Center, PA, 2007).CrossRef
4.
Zurück zum Zitat ASM Handbook.Properties and Selection: Nonferrous Alloys and Special-Purpose Materials 2 (The Materials Information Company, 2010). ASM Handbook.Properties and Selection: Nonferrous Alloys and Special-Purpose Materials 2 (The Materials Information Company, 2010).
5.
Zurück zum Zitat V. S. Zolotorevskiy and A. V. Pozdniakov, “Determining the hot cracking index of Al–Si–Cu–Mg casting alloys calculated using the effective solidification range,” Int. J. Cast Met. Res. 27, 193–198 (2014).CrossRef V. S. Zolotorevskiy and A. V. Pozdniakov, “Determining the hot cracking index of Al–Si–Cu–Mg casting alloys calculated using the effective solidification range,” Int. J. Cast Met. Res. 27, 193–198 (2014).CrossRef
6.
Zurück zum Zitat V. S. Zolotorevskiy, A. V. Pozdniakov, and A. Yu. Churyumov, “Search for promising compositions for developing new multiphase casting alloys based on Al–Cu–Mg matrix using thermodynamic calculations and mathematic simulation,” Phys. Met. Metallogr. 113, 1052–1060 (2012).CrossRef V. S. Zolotorevskiy, A. V. Pozdniakov, and A. Yu. Churyumov, “Search for promising compositions for developing new multiphase casting alloys based on Al–Cu–Mg matrix using thermodynamic calculations and mathematic simulation,” Phys. Met. Metallogr. 113, 1052–1060 (2012).CrossRef
7.
Zurück zum Zitat T. Krachan, B. Stel’makhovych, and Yu. Kuz’ma, “The Y–Cu–Al system,” J. Alloys Compd. 349, 134–139 (2003).CrossRef T. Krachan, B. Stel’makhovych, and Yu. Kuz’ma, “The Y–Cu–Al system,” J. Alloys Compd. 349, 134–139 (2003).CrossRef
8.
Zurück zum Zitat L. Zhang, P. J. Masset, X. Tao, G. Huanga, H. Luo, L. Liu, and Z. Jin, “Thermodynamic description of the Al–Cu–Y ternary system,” CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 35, 574–579 (2011).CrossRef L. Zhang, P. J. Masset, X. Tao, G. Huanga, H. Luo, L. Liu, and Z. Jin, “Thermodynamic description of the Al–Cu–Y ternary system,” CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 35, 574–579 (2011).CrossRef
9.
Zurück zum Zitat L. Zhang, P. J. Masset, F. Cao, F. Meng, L. Liu, and Z. Jin, “Phase relationships in the Al-rich region of the Al–Cu–Er system,” J. Alloys Compd. 509, 3822–3831 (2011).CrossRef L. Zhang, P. J. Masset, F. Cao, F. Meng, L. Liu, and Z. Jin, “Phase relationships in the Al-rich region of the Al–Cu–Er system,” J. Alloys Compd. 509, 3822–3831 (2011).CrossRef
10.
Zurück zum Zitat L. G. Zhang, L. B. Liu, G. X. Huang, H. Y. Qi, B. R. Jia, and Z. P. Jin, “Thermodynamic assessment of the Al–Cu–Er system,” CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 32, 527–534 (2008).CrossRef L. G. Zhang, L. B. Liu, G. X. Huang, H. Y. Qi, B. R. Jia, and Z. P. Jin, “Thermodynamic assessment of the Al–Cu–Er system,” CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 32, 527–534 (2008).CrossRef
11.
Zurück zum Zitat A. V. Pozdniakov and R. Y. Barkov, “Microstructure and materials characterisation of the novel Al–Cu–Y alloy,” Mater. Sci. Technol. 34, 1489–1496 (2018).CrossRef A. V. Pozdniakov and R. Y. Barkov, “Microstructure and materials characterisation of the novel Al–Cu–Y alloy,” Mater. Sci. Technol. 34, 1489–1496 (2018).CrossRef
12.
Zurück zum Zitat A. V. Pozdnyakov, R. Yu. Barkov, Zh. Sarsenbaev, S. M. Amer, and A. S. Prosviryakov, “Evolution of microstructure and mechanical properties of a new Al–Cu–Er wrought alloy,” Phys. Met. Metallogr. 120, 614–619 (2019).CrossRef A. V. Pozdnyakov, R. Yu. Barkov, Zh. Sarsenbaev, S. M. Amer, and A. S. Prosviryakov, “Evolution of microstructure and mechanical properties of a new Al–Cu–Er wrought alloy,” Phys. Met. Metallogr. 120, 614–619 (2019).CrossRef
13.
Zurück zum Zitat S. M. Amer, R. Yu. Barkov, O. A. Yakovtseva, and A. V. Pozdniakov, “Comparative analysis of structure and properties of quasi-binary Al–6.5Cu–2.3Y and Al–6Cu–4.05Er alloys,” Phys. Met. Metallogr. 121 (2020) (in press). S. M. Amer, R. Yu. Barkov, O. A. Yakovtseva, and A. V. Pozdniakov, “Comparative analysis of structure and properties of quasi-binary Al–6.5Cu–2.3Y and Al–6Cu–4.05Er alloys,” Phys. Met. Metallogr. 121 (2020) (in press).
14.
Zurück zum Zitat A. V. Pozdniakov, R. Yu. Barkov, S. M. Amer, V. S. Levchenko, A. D. Kotov, and A. V. Mikhaylovskaya, “Microstructure, mechanical properties and superplasticity of the Al–Cu–Y–Zr alloy,” Mater. Sci. Eng., A 758, 28–35 (2019).CrossRef A. V. Pozdniakov, R. Yu. Barkov, S. M. Amer, V. S. Levchenko, A. D. Kotov, and A. V. Mikhaylovskaya, “Microstructure, mechanical properties and superplasticity of the Al–Cu–Y–Zr alloy,” Mater. Sci. Eng., A 758, 28–35 (2019).CrossRef
15.
Zurück zum Zitat C. Booth-Morrison, D. N. Seidman, and D. C. Dunand, “Effect of Er additions on ambient and high-temperature strength of precipitation-strengthened Al–Zr–Sc–Si alloys,” Acta Mater. 60, 3643–3654 (2012).CrossRef C. Booth-Morrison, D. N. Seidman, and D. C. Dunand, “Effect of Er additions on ambient and high-temperature strength of precipitation-strengthened Al–Zr–Sc–Si alloys,” Acta Mater. 60, 3643–3654 (2012).CrossRef
16.
Zurück zum Zitat N. Q. Vo, D. C. Dunand, and D. N. Seidman, Improving aging and creep resistance in a dilute Al–Sc alloy by microalloying with Si, Zr and Er,” Acta Mater. 63, 73–85 (2014).CrossRef N. Q. Vo, D. C. Dunand, and D. N. Seidman, Improving aging and creep resistance in a dilute Al–Sc alloy by microalloying with Si, Zr and Er,” Acta Mater. 63, 73–85 (2014).CrossRef
17.
Zurück zum Zitat A. V. Pozdniakov, A. A. Aytmagambetov, S. V. Makhov, and V. I. Napalkov, “Effect of impurities of Fe and Si on the structure and strengthening upon annealing of the Al–0.2% Zr–0.1% Sc alloys with and without Y additive,” Phys. Met. Metallogr. 118, 479–484 (2017).CrossRef A. V. Pozdniakov, A. A. Aytmagambetov, S. V. Makhov, and V. I. Napalkov, “Effect of impurities of Fe and Si on the structure and strengthening upon annealing of the Al–0.2% Zr–0.1% Sc alloys with and without Y additive,” Phys. Met. Metallogr. 118, 479–484 (2017).CrossRef
18.
Zurück zum Zitat A. V. Pozdnyakov and R. Yu. Barkov, “Effect of impurities on the phase composition and properties of a new alloy of the Al–Y–Er–Zr–Sc system,” Metallurgist 63, 79–86 (2019).CrossRef A. V. Pozdnyakov and R. Yu. Barkov, “Effect of impurities on the phase composition and properties of a new alloy of the Al–Y–Er–Zr–Sc system,” Metallurgist 63, 79–86 (2019).CrossRef
19.
Zurück zum Zitat GOST 11069-2001 Aluminum Primary. Brands (Moscow, 2001) [in Russian]. GOST 11069-2001 Aluminum Primary. Brands (Moscow, 2001) [in Russian].
20.
Zurück zum Zitat V. Raghavan, “Al–Er–Si (Aluminum–Erbium–Silicon),” J. Phase Equilib. Diffus. 31, 44–45 (2010).CrossRef V. Raghavan, “Al–Er–Si (Aluminum–Erbium–Silicon),” J. Phase Equilib. Diffus. 31, 44–45 (2010).CrossRef
21.
Zurück zum Zitat S. Pukas, W. Lasocha, and R. Gladyshevskii, “Phase equilibria in the Er–Al–Si system at 873 K,” CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 33, 23–26 (2009).CrossRef S. Pukas, W. Lasocha, and R. Gladyshevskii, “Phase equilibria in the Er–Al–Si system at 873 K,” CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 33, 23–26 (2009).CrossRef
Metadaten
Titel
Effect of Impurities on the Phase Composition and Properties of a Wrought Al–6% Cu–4.05% Er Alloy
verfasst von
S. M. Amer
R. Yu. Barkov
A. V. Pozdniakov
Publikationsdatum
01.05.2020
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 5/2020
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X20050038

Weitere Artikel der Ausgabe 5/2020

Physics of Metals and Metallography 5/2020 Zur Ausgabe