Skip to main content
Erschienen in: Physics of Metals and Metallography 5/2020

01.05.2020 | STRENGTH AND PLASTICITY

Effect of Multidirectional Forging on the Microstructure and Mechanical Properties of the Al–Mg–Mn–Cr Alloy

verfasst von: A. A. Kishchik, M. S. Kishchik, A. D. Kotov, A. V. Mikhaylovskaya

Erschienen in: Physics of Metals and Metallography | Ausgabe 5/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effect of multidirectional forging on the grain structure and parameters of secondary-phase particles in the Al–4.8Mg–1.2Mn–0.1Cr alloy has been investigated using the methods of the scanning and transmission electron microscopy. The multidirectional forging performed at a temperature of 350°C to a cumulative strain of 10.5 has resulted in a 1.5 decrease in average particle sizes of the manganese-bearing phases of crystallization origin and dispersoids and in the formation of a structure with a mean grain size of 1.7 µm. Multidirectional forging included in a sheet processing, in contrast to hot rolling, forms an equiaxed grain structure with a grain size of about 6 µm in recrystallized sheets and with enhanced strength characteristics.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R. Z. Valiev, A. P. Zhilyaev., and T. G. Langdon, Bulk Nanostructured Materials: Fundamentals and Applications (Wiley, New York, 2014). R. Z. Valiev, A. P. Zhilyaev., and T. G. Langdon, Bulk Nanostructured Materials: Fundamentals and Applications (Wiley, New York, 2014).
2.
Zurück zum Zitat S. V. Dobatkin, V. V. Zakharov, T. D. Rostova, N. A. Krasil’nikov, and E. N. Bastarash, “The formation of nano- and submicrocrystalline structures in the aluminum alloy D16 during severe plastic deformation,” Tekhnol. Legk. Spl. 1–2, 62–66 (2006). S. V. Dobatkin, V. V. Zakharov, T. D. Rostova, N. A. Krasil’nikov, and E. N. Bastarash, “The formation of nano- and submicrocrystalline structures in the aluminum alloy D16 during severe plastic deformation,” Tekhnol. Legk. Spl. 1–2, 62–66 (2006).
3.
Zurück zum Zitat M. Murashkin, A. Medvedev, V. Kazykhanov, A. Krokhin, G. Raab, N. Enikeev, and R. Z. Valiev, “Enhanced mechanical properties and electrical conductivity in ultrafine-grained Al 6101 alloy processed via ECAP-Conform,” Metals 5, 2148–2164 (2015).CrossRef M. Murashkin, A. Medvedev, V. Kazykhanov, A. Krokhin, G. Raab, N. Enikeev, and R. Z. Valiev, “Enhanced mechanical properties and electrical conductivity in ultrafine-grained Al 6101 alloy processed via ECAP-Conform,” Metals 5, 2148–2164 (2015).CrossRef
4.
Zurück zum Zitat M. Kawasaki, B. Ahn, P. Kumar, J. Jang, and T. G. Langdon, “Nano- and micro-mechanical properties of ultrafine-grained materials processed by severe plastic deformation techniques,” Adv. Eng. Mater. 19, 1–17 (2017).CrossRef M. Kawasaki, B. Ahn, P. Kumar, J. Jang, and T. G. Langdon, “Nano- and micro-mechanical properties of ultrafine-grained materials processed by severe plastic deformation techniques,” Adv. Eng. Mater. 19, 1–17 (2017).CrossRef
5.
Zurück zum Zitat T. G. Langdon, “Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement,” Acta Mater. 61, 7035–7059 (2013).CrossRef T. G. Langdon, “Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement,” Acta Mater. 61, 7035–7059 (2013).CrossRef
6.
Zurück zum Zitat T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J. J. Jonas, “Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions,” Prog. Mater. Sci. 60, 130–207 (2014).CrossRef T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J. J. Jonas, “Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions,” Prog. Mater. Sci. 60, 130–207 (2014).CrossRef
7.
Zurück zum Zitat R. R. Il’yasov, E. V. Avtokratova, A. D. Kotov, S. V. Krymskii, M. V. Markushev, A. V. Mikhailovskaya, and O. Sh. Sitdikov, “Influence of preliminary heat treatment on the structure and hardness of cryo-rolled and annealed D16 aluminum alloy,” Vestn. Tambov. Univ. Ser.: Est. Tekh. Nauki 21, 1033–1037 (2016). R. R. Il’yasov, E. V. Avtokratova, A. D. Kotov, S. V. Krymskii, M. V. Markushev, A. V. Mikhailovskaya, and O. Sh. Sitdikov, “Influence of preliminary heat treatment on the structure and hardness of cryo-rolled and annealed D16 aluminum alloy,” Vestn. Tambov. Univ. Ser.: Est. Tekh. Nauki 21, 1033–1037 (2016).
8.
Zurück zum Zitat M. V. Markushev, “On the principles of the deformation methods of grain refinement in aluminum alloys to ultrafine size: II. Ultrafine-grained alloys,” Phys. Met. Metallogr. 108, 161–170 (2009).CrossRef M. V. Markushev, “On the principles of the deformation methods of grain refinement in aluminum alloys to ultrafine size: II. Ultrafine-grained alloys,” Phys. Met. Metallogr. 108, 161–170 (2009).CrossRef
9.
Zurück zum Zitat G. A. Salishchev, R. M. Galeev, S. V. Zherebtsov, A. M. Smyslov, E. V. Safin, and M. M. Myshlyaev, “Mechanical properties of VT6 titanium alloy with microcrystalline and submicrocrystalline structures,” Metally, No. 6, 84–87 (1999). G. A. Salishchev, R. M. Galeev, S. V. Zherebtsov, A. M. Smyslov, E. V. Safin, and M. M. Myshlyaev, “Mechanical properties of VT6 titanium alloy with microcrystalline and submicrocrystalline structures,” Metally, No. 6, 84–87 (1999).
10.
Zurück zum Zitat Y. Nakao and H. Miura, “Nano-grain evolution in austenitic stainless steel during multi-directional forging,” Mater. Sci. Eng., A 528, 1310–1317 (2011).CrossRef Y. Nakao and H. Miura, “Nano-grain evolution in austenitic stainless steel during multi-directional forging,” Mater. Sci. Eng., A 528, 1310–1317 (2011).CrossRef
11.
Zurück zum Zitat A. Belyakov, T. Sakai, and H. Miura, “Microstructure and deformation behaviour of submicrocrystalline 304 stainless steel produced by severe plastic deformation,” Mater. Sci. Eng., A 319, 867–871 (2001).CrossRef A. Belyakov, T. Sakai, and H. Miura, “Microstructure and deformation behaviour of submicrocrystalline 304 stainless steel produced by severe plastic deformation,” Mater. Sci. Eng., A 319, 867–871 (2001).CrossRef
12.
Zurück zum Zitat O. S. Sitdikov, E. V. Avtokratova, O. E. Mukhametdinova, R. N. Garipova, and M. V. Markushev, “Effect of the size of Al3(Sc,Zr) precipitates on the structure of multi-directionally isothermally forged Al–Mg–Sc–Zr alloy,” Phys. Met. Metallogr. 118, 1215–1224 (2017).CrossRef O. S. Sitdikov, E. V. Avtokratova, O. E. Mukhametdinova, R. N. Garipova, and M. V. Markushev, “Effect of the size of Al3(Sc,Zr) precipitates on the structure of multi-directionally isothermally forged Al–Mg–Sc–Zr alloy,” Phys. Met. Metallogr. 118, 1215–1224 (2017).CrossRef
13.
Zurück zum Zitat A. Dziubinskaa, A. Gontarz, K. Horzelska, and P. Pieґsko, “The microstructure and mechanical properties of AZ31 magnesium alloy aircraft brackets produced by a new forging technology,” Procedia Manuf. 2, 337–341 (2015).CrossRef A. Dziubinskaa, A. Gontarz, K. Horzelska, and P. Pieґsko, “The microstructure and mechanical properties of AZ31 magnesium alloy aircraft brackets produced by a new forging technology,” Procedia Manuf. 2, 337–341 (2015).CrossRef
14.
Zurück zum Zitat Y. Estrin and A. Vinogradov, “Extreme grain refinement by severe plastic deformation: A wealth of challenging science,” Acta Mater. 61, 782–817 (2013).CrossRef Y. Estrin and A. Vinogradov, “Extreme grain refinement by severe plastic deformation: A wealth of challenging science,” Acta Mater. 61, 782–817 (2013).CrossRef
15.
Zurück zum Zitat P. N. Rao, D. Singh, and R. Jayaganthan, “Mechanical properties and microstructural evolution of Al 6061 alloy processed by multidirectional forging at liquid nitrogen temperature,” Mater. Des. 56, 97–104 (2014).CrossRef P. N. Rao, D. Singh, and R. Jayaganthan, “Mechanical properties and microstructural evolution of Al 6061 alloy processed by multidirectional forging at liquid nitrogen temperature,” Mater. Des. 56, 97–104 (2014).CrossRef
16.
Zurück zum Zitat P. E. Armstrong, J. E. Hockett, and O. D. Sherby, “Large deformation of 1100 sluminum at 300 K,” J. Mech. Phys. Solids 30, 37–58 (1982).CrossRef P. E. Armstrong, J. E. Hockett, and O. D. Sherby, “Large deformation of 1100 sluminum at 300 K,” J. Mech. Phys. Solids 30, 37–58 (1982).CrossRef
17.
Zurück zum Zitat J. Li, J. Liu, and Z. Cui, “Microstructures and mechanical properties of AZ61 magnesium alloy after isothermal multidirectional forging with increasing rate,” Mater. Sci. Eng., A 643, 32–36 (2015).CrossRef J. Li, J. Liu, and Z. Cui, “Microstructures and mechanical properties of AZ61 magnesium alloy after isothermal multidirectional forging with increasing rate,” Mater. Sci. Eng., A 643, 32–36 (2015).CrossRef
18.
Zurück zum Zitat Q. Zhu, L. Li, C. Ban, Z. Zhao, Y. Zuo, and J. Cui, “Structure uniformity and limits of grain refinement of high purity aluminum during multi-directional forging process at room temperature,” Trans. Nonferrous Met. Soc. China 24, 1301–1306 (2014).CrossRef Q. Zhu, L. Li, C. Ban, Z. Zhao, Y. Zuo, and J. Cui, “Structure uniformity and limits of grain refinement of high purity aluminum during multi-directional forging process at room temperature,” Trans. Nonferrous Met. Soc. China 24, 1301–1306 (2014).CrossRef
19.
Zurück zum Zitat A. K. Padap, G. P. Chaudhari, S. K. Nath, and V. Pancholi, “Ultrafine-grained steel fabricated using warm multiaxial forging: Microstructure and mechanical properties,” Mater. Sci. Eng., A 527, 110–117 (2009).CrossRef A. K. Padap, G. P. Chaudhari, S. K. Nath, and V. Pancholi, “Ultrafine-grained steel fabricated using warm multiaxial forging: Microstructure and mechanical properties,” Mater. Sci. Eng., A 527, 110–117 (2009).CrossRef
20.
Zurück zum Zitat O. Sitdikov, R. Garipova, E. Avtokratova, O. Mukhametdinova, and M. Markushev, “Effect of temperature of isothermal multidirectional forging on microstructure development in the Al–Mg alloy with nano-size aluminides of Sc and Zr,” J. Alloys Compd. 746, 520–531 (2018).CrossRef O. Sitdikov, R. Garipova, E. Avtokratova, O. Mukhametdinova, and M. Markushev, “Effect of temperature of isothermal multidirectional forging on microstructure development in the Al–Mg alloy with nano-size aluminides of Sc and Zr,” J. Alloys Compd. 746, 520–531 (2018).CrossRef
21.
Zurück zum Zitat S. Ringeva, D. Piot, C. Desrayaud, and J. H. Driver, “Texture and microtexture development in an Al–3Mg–Sc(Zr) alloy deformed by triaxial forging,” Acta Mater. 54, 3095–3105 (2006).CrossRef S. Ringeva, D. Piot, C. Desrayaud, and J. H. Driver, “Texture and microtexture development in an Al–3Mg–Sc(Zr) alloy deformed by triaxial forging,” Acta Mater. 54, 3095–3105 (2006).CrossRef
22.
Zurück zum Zitat Y. Nakao, H. Miura, and T. Sakai, “Microstructural evolution and recrystallization behavior in copper multi-directionally forged at 77 K,” Adv. Mater. Res. 15, 649–654 (2007). Y. Nakao, H. Miura, and T. Sakai, “Microstructural evolution and recrystallization behavior in copper multi-directionally forged at 77 K,” Adv. Mater. Res. 15, 649–654 (2007).
23.
Zurück zum Zitat F. Z. Utyashev and G. I. Raab, Deformation Methods of Production and Processing of Ultrafine-Grained and Nanostructured Materials Ufa, NIK Bashk. Entsikl., 2013 [in Russian]. F. Z. Utyashev and G. I. Raab, Deformation Methods of Production and Processing of Ultrafine-Grained and Nanostructured Materials Ufa, NIK Bashk. Entsikl., 2013 [in Russian].
24.
Zurück zum Zitat M. Wang, L. Huang, W. Liu, Y. Ma, and B. Huang, “Influence of cumulative strain on microstructure and mechanical properties of multi-directional forged 2A14 aluminum alloy,” Mater. Sci. Eng., A 674, 40–51 (2016).CrossRef M. Wang, L. Huang, W. Liu, Y. Ma, and B. Huang, “Influence of cumulative strain on microstructure and mechanical properties of multi-directional forged 2A14 aluminum alloy,” Mater. Sci. Eng., A 674, 40–51 (2016).CrossRef
25.
Zurück zum Zitat M. Hussain, P. N. Rao, D. Singh, R. Jayaganthan, and S. Singh, “Comparative study of microstructure and mechanical properties of Al 6063 alloy processed by multi axial forging at 77K and cryorolling,” Procedia Eng. 75, 129–133 (2014).CrossRef M. Hussain, P. N. Rao, D. Singh, R. Jayaganthan, and S. Singh, “Comparative study of microstructure and mechanical properties of Al 6063 alloy processed by multi axial forging at 77K and cryorolling,” Procedia Eng. 75, 129–133 (2014).CrossRef
26.
Zurück zum Zitat F. J. Humphreys, “The nucleation of recrystallization at second phase particles in deformed aluminium,” Acta Metall. 25, 1323–1344 (1977).CrossRef F. J. Humphreys, “The nucleation of recrystallization at second phase particles in deformed aluminium,” Acta Metall. 25, 1323–1344 (1977).CrossRef
27.
Zurück zum Zitat V. S. Zolotorevskiy, R. I. Dobrojinskaja, V. V. Cheverikin, E. A. Khamnagdaeva, A. V. Pozdniakov, V. S. Levchenko, and E. S. Besogonova, “Strength and substructure of Al–4.7Mg–0.32Mn–0.21Sc–0.09Zr alloy sheets,” Phys. Met. Metallogr. 118, 407–414 (2017).CrossRef V. S. Zolotorevskiy, R. I. Dobrojinskaja, V. V. Cheverikin, E. A. Khamnagdaeva, A. V. Pozdniakov, V. S. Levchenko, and E. S. Besogonova, “Strength and substructure of Al–4.7Mg–0.32Mn–0.21Sc–0.09Zr alloy sheets,” Phys. Met. Metallogr. 118, 407–414 (2017).CrossRef
28.
Zurück zum Zitat A. A. Kishchik, A. D. Kotov and A. V. Mikhaylovskaya, “The microstructure and high-strain-rate superplasticity of the Al–Mg–Ni–Fe–Mn–Cr–Zr alloy,” Phys. Met. Metallogr. 120, 1006–1013 (2019).CrossRef A. A. Kishchik, A. D. Kotov and A. V. Mikhaylovskaya, “The microstructure and high-strain-rate superplasticity of the Al–Mg–Ni–Fe–Mn–Cr–Zr alloy,” Phys. Met. Metallogr. 120, 1006–1013 (2019).CrossRef
29.
Zurück zum Zitat V. S. Zolotorevskiy, R. I. Dobrojinskaja, V. V. Cheverikin, E. A. Khamnagdaeva, A. V. Pozdniakov, V. S. Levchenko, and E. S. Besogonova, “Evolution of structure and mechanical properties of Al–4.7Mg–0.32Mn–0.21Sc–0.09Zr alloy sheets after accumulated deformation during rolling,” Phys. Met. Metallogr. 117, 1163–1169 (2016).CrossRef V. S. Zolotorevskiy, R. I. Dobrojinskaja, V. V. Cheverikin, E. A. Khamnagdaeva, A. V. Pozdniakov, V. S. Levchenko, and E. S. Besogonova, “Evolution of structure and mechanical properties of Al–4.7Mg–0.32Mn–0.21Sc–0.09Zr alloy sheets after accumulated deformation during rolling,” Phys. Met. Metallogr. 117, 1163–1169 (2016).CrossRef
30.
Zurück zum Zitat M. S. Kishchik, A. V. Mikhaylovskaya, A. D. Kotov, A. Mosleh, W. S. AbuShanab, and V. K. Portnoy, “Effect of multidirectional forging on the grain structure and mechanical properties of the Al–Mg–Mn alloy,” Materials 11, E2166 (2018).CrossRef M. S. Kishchik, A. V. Mikhaylovskaya, A. D. Kotov, A. Mosleh, W. S. AbuShanab, and V. K. Portnoy, “Effect of multidirectional forging on the grain structure and mechanical properties of the Al–Mg–Mn alloy,” Materials 11, E2166 (2018).CrossRef
31.
Zurück zum Zitat A. V. Mikhaylovskaya, A. D. Kotov, M. S. Kishchik, A. S. Prosviryakov, and V. K. Portnoy, “The effect of isothermal multi-directional forging on the grain structure, superplasticity and mechanical properties of the conventional Al–Mg-based alloy,” Metals 9(1), 33 (2019).CrossRef A. V. Mikhaylovskaya, A. D. Kotov, M. S. Kishchik, A. S. Prosviryakov, and V. K. Portnoy, “The effect of isothermal multi-directional forging on the grain structure, superplasticity and mechanical properties of the conventional Al–Mg-based alloy,” Metals 9(1), 33 (2019).CrossRef
32.
Zurück zum Zitat A. V. Mikhaylovskaya, V. K. Portnoy, A. G. Mochugovskiy, M. Yu. Zadorozhnyy, N. Yu. Tabachkova, and I. S. Golovin, “Effect of homogenisation treatment on precipitation, recrystallisation and properties of Al–3% Mg–TM alloys (TM = Mn, Cr, Zr),” Mater. Des. 109, 197–208 (2016).CrossRef A. V. Mikhaylovskaya, V. K. Portnoy, A. G. Mochugovskiy, M. Yu. Zadorozhnyy, N. Yu. Tabachkova, and I. S. Golovin, “Effect of homogenisation treatment on precipitation, recrystallisation and properties of Al–3% Mg–TM alloys (TM = Mn, Cr, Zr),” Mater. Des. 109, 197–208 (2016).CrossRef
33.
Zurück zum Zitat A. Mochugovskiy, N. Tabachkova, and A. Mikhaylovskaya, “Annealing induced precipitation of nanoscale icosahedral quasicrystals in aluminum based alloy,” Mater. Lett. 247, 200–203 (2019).CrossRef A. Mochugovskiy, N. Tabachkova, and A. Mikhaylovskaya, “Annealing induced precipitation of nanoscale icosahedral quasicrystals in aluminum based alloy,” Mater. Lett. 247, 200–203 (2019).CrossRef
34.
Zurück zum Zitat O. Engler, K. Kuhnke, and J. Hasenclever, “Development of intermetallic particles during solidification and homogenization of two AA 5xxx series Al–Mg alloys with different Mg contents,” J. Alloy. Compd. 728, 669–681 (2017).CrossRef O. Engler, K. Kuhnke, and J. Hasenclever, “Development of intermetallic particles during solidification and homogenization of two AA 5xxx series Al–Mg alloys with different Mg contents,” J. Alloy. Compd. 728, 669–681 (2017).CrossRef
35.
Zurück zum Zitat O. Engler, G. Laptyeva, and N. Wang, “Impact of homogenization on microchemistry and recrystallization of the Al–Fe–Mn alloy AA 8006,” Mater. Charact. 79, 60–75 (2013).CrossRef O. Engler, G. Laptyeva, and N. Wang, “Impact of homogenization on microchemistry and recrystallization of the Al–Fe–Mn alloy AA 8006,” Mater. Charact. 79, 60–75 (2013).CrossRef
Metadaten
Titel
Effect of Multidirectional Forging on the Microstructure and Mechanical Properties of the Al–Mg–Mn–Cr Alloy
verfasst von
A. A. Kishchik
M. S. Kishchik
A. D. Kotov
A. V. Mikhaylovskaya
Publikationsdatum
01.05.2020
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 5/2020
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X20050075

Weitere Artikel der Ausgabe 5/2020

Physics of Metals and Metallography 5/2020 Zur Ausgabe