Skip to main content
Erschienen in: Physics of Metals and Metallography 10/2020

01.10.2020 | STRENGTH AND PLASTICITY

Effect of Liquid Carburizing at Lowered Temperature on the Micromechanical Characteristics of Metastable Austenitic Steel

verfasst von: R. A. Savrai, P. A. Skorynina, A. V. Makarov, A. L. Osintseva

Erschienen in: Physics of Metals and Metallography | Ausgabe 10/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effect of liquid carburizing at a temperature of 780°C on the micromechanical characteristics of the corrosion-resistant chromium–nickel austenitic steel (in wt %: Cr, 16.80; Ni, 8.44) has been studied in this work. According to instrumented microindentation data, it has been established that carburizing leads to the superficial hardening of the studied steel. An average increase in the indentation hardness HIT is nearly 500%. It has been demonstrated that carburizing also leads to an increase in the contact elasticity modulus of the steel E* that grew by 28% on average compared to E* in the quenched state. The carburized steel surface is characterized by an increased resistance to elastoplastic strain as evidenced by an increase in the parameters Re by 1.3–3.5 times, HIT/E* by 2.4–3.5 times, and \({{H_{{{\text{IT}}}}^{3}} \mathord{\left/ {\vphantom {{H_{{{\text{IT}}}}^{3}} {{{E}^{{*2}}}}}} \right. \kern-0em} {{{E}^{{*2}}}}}\) by 49–109 times. On the contrary, the plasticity index δA decreases by 20% on average from 0.92–0.93 to 0.70–0.74 after carburizing. It has been shown that the instrumented indentation of the steel in the quenched state and after carburizing at different maximum indentor loads provides the possibility to perform a more precise analysis of the micromechanical characteristics of the gradient layer formed by means of carburizing by comparing them with the characteristics of the quenched steel. Based on the results of indentation at different maximum indentor loads, the gradient of properties in the thin carburized layer of up to 4 µm in depth has also been established.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Surface Hardening of Steels: Understanding the Basics, Ed. by J. R. Davis (ASM International, 2002), p. 364. Surface Hardening of Steels: Understanding the Basics, Ed. by J. R. Davis (ASM International, 2002), p. 364.
2.
Zurück zum Zitat R. A. Savrai, P. A. Skorynina, A. V. Makarov, and A. L. Osintseva, “Structure and surface properties of metastable austenitic steel subjected to liquid carburizing at a reduced temperature,” Phys. Met. Metallogr. 121, No. 1, 65–71 (2020).CrossRef R. A. Savrai, P. A. Skorynina, A. V. Makarov, and A. L. Osintseva, “Structure and surface properties of metastable austenitic steel subjected to liquid carburizing at a reduced temperature,” Phys. Met. Metallogr. 121, No. 1, 65–71 (2020).CrossRef
3.
Zurück zum Zitat A. V. Makarov, R. A. Savrai, E. S. Gorkunov, A. S. Yurovskikh, I. Yu. Malygina, and N. A. Davydova, “Structure, mechanical characteristics, and deformation and fracture features of quenched structural steel under static and cyclic loading after combined strain-heat nanostructuring treatment,” Phys. Mesomech. 18, 43–57 (2014).CrossRef A. V. Makarov, R. A. Savrai, E. S. Gorkunov, A. S. Yurovskikh, I. Yu. Malygina, and N. A. Davydova, “Structure, mechanical characteristics, and deformation and fracture features of quenched structural steel under static and cyclic loading after combined strain-heat nanostructuring treatment,” Phys. Mesomech. 18, 43–57 (2014).CrossRef
4.
Zurück zum Zitat A. V. Makarov, S. N. Luchko, V. A. Shabashov, E. G. Volkova, A. L. Osintseva, A. E. Zamatovskii, A. V. Litvinov, and V. V. Sagaradze, “Structural and phase transformations and micromechanical properties of the high-nitrogen austenitic steel deformed by shear under pressure,” Phys. Met. Metallogr. 118, No. 1, 52–64 (2017).CrossRef A. V. Makarov, S. N. Luchko, V. A. Shabashov, E. G. Volkova, A. L. Osintseva, A. E. Zamatovskii, A. V. Litvinov, and V. V. Sagaradze, “Structural and phase transformations and micromechanical properties of the high-nitrogen austenitic steel deformed by shear under pressure,” Phys. Met. Metallogr. 118, No. 1, 52–64 (2017).CrossRef
5.
Zurück zum Zitat R. A. Savrai, A. V. Makarov, I. Yu. Malygina, S. A. Rogovaya, and A. L. Osintseva, “Improving the strength of the AISI 321 austenitic stainless steel by frictional treatment [Digital resource],” Diagnostics, Resource and Mechanics of Materials and Structures, issue 5, 43–62 (2017). URL: http://dream-journal.org/issues/2017-5/2017-5_149.html R. A. Savrai, A. V. Makarov, I. Yu. Malygina, S. A. Rogovaya, and A. L. Osintseva, “Improving the strength of the AISI 321 austenitic stainless steel by frictional treatment [Digital resource],” Diagnostics, Resource and Mechanics of Materials and Structures, issue 5, 43–62 (2017). URL: http://​dream-journal.​org/​issues/​2017-5/​2017-5_​149.​html
6.
Zurück zum Zitat R. A. Savrai, A. V. Makarov, I. Yu. Malygina, and E. G. Volkova, “Effect of nanostructuring frictional treatment on the properties of high-carbon pearlitic steel. Part I: microstructure and surface properties,” Mater. Sci. Eng., A 734, 506–512 (2018).CrossRef R. A. Savrai, A. V. Makarov, I. Yu. Malygina, and E. G. Volkova, “Effect of nanostructuring frictional treatment on the properties of high-carbon pearlitic steel. Part I: microstructure and surface properties,” Mater. Sci. Eng., A 734, 506–512 (2018).CrossRef
7.
Zurück zum Zitat A. V. Makarov, P. A. Skorynina, E. G. Volkova, and A. L. Osintseva, “Effect of friction treatment on the structure, micromechanical and tribological properties of austenitic steel 03Kh16N14M3T,” Met. Sci. Heat Treat., Nos. 11–12, 764–768 (2020). A. V. Makarov, P. A. Skorynina, E. G. Volkova, and A. L. Osintseva, “Effect of friction treatment on the structure, micromechanical and tribological properties of austenitic steel 03Kh16N14M3T,” Met. Sci. Heat Treat., Nos. 11–12, 764–768 (2020).
8.
Zurück zum Zitat J. Qu, P. J. Blau, L. Zhang, and H. Xu, “Effects of multiple treatments of low-temperature colossal supersaturation on tribological characteristics of austenitic stainless steels,” Wear 265, 1909–1913 (2008).CrossRef J. Qu, P. J. Blau, L. Zhang, and H. Xu, “Effects of multiple treatments of low-temperature colossal supersaturation on tribological characteristics of austenitic stainless steels,” Wear 265, 1909–1913 (2008).CrossRef
9.
Zurück zum Zitat M. C. S. Duarte, C. Godoya, and J. C. A. B. Wilson, “Analysis of sliding wear tests of plasma processed AISI 316L steel,” Surf. Coat. Technol. 260, 316–325 (2014).CrossRef M. C. S. Duarte, C. Godoya, and J. C. A. B. Wilson, “Analysis of sliding wear tests of plasma processed AISI 316L steel,” Surf. Coat. Technol. 260, 316–325 (2014).CrossRef
10.
Zurück zum Zitat Y. Jiang, Y. Li, Y. F. Jia, X. C. Zhang, and J. M. Gong, “Gradient elastic-plastic properties of expanded austenite layer in 316L stainless steel,” Acta Metall. Sin. 31, No. 8, 831–841 (2018).CrossRef Y. Jiang, Y. Li, Y. F. Jia, X. C. Zhang, and J. M. Gong, “Gradient elastic-plastic properties of expanded austenite layer in 316L stainless steel,” Acta Metall. Sin. 31, No. 8, 831–841 (2018).CrossRef
11.
Zurück zum Zitat A. V. Makarov, N. A. Pozdejeva, R. A. Savrai, I. Yu. Malygina, and A. S. Yurovskikh, “Improvement of wear resistance of quenched structural steel by nanostructuring frictional treatment,” J. Frict. Wear 33, No. 6, 433–442 (2012).CrossRef A. V. Makarov, N. A. Pozdejeva, R. A. Savrai, I. Yu. Malygina, and A. S. Yurovskikh, “Improvement of wear resistance of quenched structural steel by nanostructuring frictional treatment,” J. Frict. Wear 33, No. 6, 433–442 (2012).CrossRef
12.
Zurück zum Zitat V. P. Kuznetsov, A. V. Makarov, S. G. Psakhie, R. A. Savrai, I. Y. Malygina, and N. A. Davydova, “Tribological aspects in nanostructuring burnishing of structural steels,” Phys. Mesomech. 17, No. 4, 250–264 (2014).CrossRef V. P. Kuznetsov, A. V. Makarov, S. G. Psakhie, R. A. Savrai, I. Y. Malygina, and N. A. Davydova, “Tribological aspects in nanostructuring burnishing of structural steels,” Phys. Mesomech. 17, No. 4, 250–264 (2014).CrossRef
13.
Zurück zum Zitat A. V. Makarov, N. N. Soboleva, R. A. Savrai, and I. Yu. Malygina, “Improving the micromechanical properties and wear resistance of chromium-nickel laser coating by finishing friction treatment,” Vector Nauki TGU, No. 4, 60–67 (2015). A. V. Makarov, N. N. Soboleva, R. A. Savrai, and I. Yu. Malygina, “Improving the micromechanical properties and wear resistance of chromium-nickel laser coating by finishing friction treatment,” Vector Nauki TGU, No. 4, 60–67 (2015).
14.
Zurück zum Zitat N. B. Pugacheva, E. B. Trushina, and T. M. Bykova, “Research on the tribological properties of iron borides as diffusion coatings,” J. Frict. Wear 35, No. 6, 489–496 (2014).CrossRef N. B. Pugacheva, E. B. Trushina, and T. M. Bykova, “Research on the tribological properties of iron borides as diffusion coatings,” J. Frict. Wear 35, No. 6, 489–496 (2014).CrossRef
15.
Zurück zum Zitat R. A. Savrai and A. V. Makarov, “Effect of nanostructuring frictional treatment on the properties of high-carbon pearlitic steel. Part II: mechanical properties,” Mater. Sci. Eng., A 734, 513–518 (2018).CrossRef R. A. Savrai and A. V. Makarov, “Effect of nanostructuring frictional treatment on the properties of high-carbon pearlitic steel. Part II: mechanical properties,” Mater. Sci. Eng., A 734, 513–518 (2018).CrossRef
16.
Zurück zum Zitat R. A. Savrai, A. V. Makarov, N. N. Soboleva, I. Yu. Malygina, and A. L. Osintseva, “The behavior of gas powder laser clad NiCrBSi coatings under contact loading,” J. Mater. Engineer. Perform. 25, No. 3, 1068–1075 (2016).CrossRef R. A. Savrai, A. V. Makarov, N. N. Soboleva, I. Yu. Malygina, and A. L. Osintseva, “The behavior of gas powder laser clad NiCrBSi coatings under contact loading,” J. Mater. Engineer. Perform. 25, No. 3, 1068–1075 (2016).CrossRef
17.
Zurück zum Zitat R. A. Savrai, “Resistance of laser-clad chromium–nickel coatings to failure under contact fatigue loading,” Phys. Met. Metallogr. 119, No. 10, 1013–1021 (2018).CrossRef R. A. Savrai, “Resistance of laser-clad chromium–nickel coatings to failure under contact fatigue loading,” Phys. Met. Metallogr. 119, No. 10, 1013–1021 (2018).CrossRef
18.
Zurück zum Zitat R. A. Savrai, N. N. Soboleva, I. Yu. Malygina, and A. L. Osintseva, “The structural characteristics and contact loading behavior of gas powder laser clad CoNiCrW coating,” Opt. Laser Technol. 126, 106079, 1–8 (2020).CrossRef R. A. Savrai, N. N. Soboleva, I. Yu. Malygina, and A. L. Osintseva, “The structural characteristics and contact loading behavior of gas powder laser clad CoNiCrW coating,” Opt. Laser Technol. 126, 106079, 1–8 (2020).CrossRef
19.
Zurück zum Zitat A. Yonezu, R. Kusano, T. Hiyoshi, and X. Chen, “A method to estimate residual stress in austenitic stainless steel using a microindentation test,” J. Mater. Eng. Perform. 24, 362–372 (2015).CrossRef A. Yonezu, R. Kusano, T. Hiyoshi, and X. Chen, “A method to estimate residual stress in austenitic stainless steel using a microindentation test,” J. Mater. Eng. Perform. 24, 362–372 (2015).CrossRef
20.
Zurück zum Zitat GOST R 8.748-2011 (ISO 14577-1:2002) State system for ensuring the uniformity of measurements (GSI). Metals and alloys. Measurement of hardness and other characteristics of materials during instrumental indentation. Part 1. Method of testing. GOST R 8.748-2011 (ISO 14577-1:2002) State system for ensuring the uniformity of measurements (GSI). Metals and alloys. Measurement of hardness and other characteristics of materials during instrumental indentation. Part 1. Method of testing.
21.
Zurück zum Zitat Y. T. Cheng and C. M. Cheng, “Relationships between hardness, elastic modulus and the work of indentation,” Appl. Phys. Lett. 73, No. 5, 614–618 (1998).CrossRef Y. T. Cheng and C. M. Cheng, “Relationships between hardness, elastic modulus and the work of indentation,” Appl. Phys. Lett. 73, No. 5, 614–618 (1998).CrossRef
22.
Zurück zum Zitat T. F. Page and S. V. Hainsworth, “Using nanoindentation techniques for the characterization of coated systems: a critique,” Surf. Coat. Technol. 61, Nos. 1–3, 201–208 (1993).CrossRef T. F. Page and S. V. Hainsworth, “Using nanoindentation techniques for the characterization of coated systems: a critique,” Surf. Coat. Technol. 61, Nos. 1–3, 201–208 (1993).CrossRef
23.
Zurück zum Zitat M. I. Petrzhik and E. A. Levashov, “Modern methods for investigating functional surfaces of advanced materials by mechanical contact testing,” Crystallogr. Rep. 52, No. 6, 966–974 (2007).CrossRef M. I. Petrzhik and E. A. Levashov, “Modern methods for investigating functional surfaces of advanced materials by mechanical contact testing,” Crystallogr. Rep. 52, No. 6, 966–974 (2007).CrossRef
24.
Zurück zum Zitat P. H. Mayrhofer, C. Mitterer, and J. Musil, “Structure-property relationships in single- and dual-phase nanocrystalline hard coatings,” Surf. Coat. Technol. 174–175, 725–731 (2003).CrossRef P. H. Mayrhofer, C. Mitterer, and J. Musil, “Structure-property relationships in single- and dual-phase nanocrystalline hard coatings,” Surf. Coat. Technol. 174–175, 725–731 (2003).CrossRef
25.
Zurück zum Zitat Yu. V. Mil’man, S. I. Chugunova, and I. V. Goncharova, “Characteristic of plasticity determined by indentation,” Vopr. At. Nauki Tekh., No. 4, 182–187 (2011). Yu. V. Mil’man, S. I. Chugunova, and I. V. Goncharova, “Characteristic of plasticity determined by indentation,” Vopr. At. Nauki Tekh., No. 4, 182–187 (2011).
26.
Zurück zum Zitat A. O. Zhigachev, Yu. I. Golovin, A. V. Umrikhin, A. V. Korenkov, A. I. Tyurin, V. V. Rodaev, and T. A. D’yachek, Ceramic Materials Based on Zirconium Dioxide, Ed. by Yu.I. Golovin (Tekhnosfer, Moscow, 2018), p. 358 [in Russian]. A. O. Zhigachev, Yu. I. Golovin, A. V. Umrikhin, A. V. Korenkov, A. I. Tyurin, V. V. Rodaev, and T. A. D’yachek, Ceramic Materials Based on Zirconium Dioxide, Ed. by Yu.I. Golovin (Tekhnosfer, Moscow, 2018), p. 358 [in Russian].
27.
Zurück zum Zitat J. A. Benito, J. Jorba, J. M. Manero, and A. Roca, “Change of Young’s modulus of cold-deformed pure iron in a tensile test,” Metall. Mater. Trans. A 36, No. 12, 3317–3324 (2005).CrossRef J. A. Benito, J. Jorba, J. M. Manero, and A. Roca, “Change of Young’s modulus of cold-deformed pure iron in a tensile test,” Metall. Mater. Trans. A 36, No. 12, 3317–3324 (2005).CrossRef
28.
Zurück zum Zitat A. V. Makarov, R. A. Savrai, V. M. Schastlivtsev, T. I. Tabatchikova, I. L. Yakovleva, and L. Yu. Egorova, “Structural features of the behavior of a high-carbon pearlitic steel upon cyclic loading,” Phys. Met. Metallogr. 111, No. 1, 95–109 (2011).CrossRef A. V. Makarov, R. A. Savrai, V. M. Schastlivtsev, T. I. Tabatchikova, I. L. Yakovleva, and L. Yu. Egorova, “Structural features of the behavior of a high-carbon pearlitic steel upon cyclic loading,” Phys. Met. Metallogr. 111, No. 1, 95–109 (2011).CrossRef
29.
Zurück zum Zitat D. McLean, Mechanical Properties of Metals (Wiley, New York, 1965). D. McLean, Mechanical Properties of Metals (Wiley, New York, 1965).
30.
Zurück zum Zitat V. G. Gavrilyuk, Distribution of Carbon in Steel (Naukova dumka, Kiev, 1987) [in Russian]. V. G. Gavrilyuk, Distribution of Carbon in Steel (Naukova dumka, Kiev, 1987) [in Russian].
Metadaten
Titel
Effect of Liquid Carburizing at Lowered Temperature on the Micromechanical Characteristics of Metastable Austenitic Steel
verfasst von
R. A. Savrai
P. A. Skorynina
A. V. Makarov
A. L. Osintseva
Publikationsdatum
01.10.2020
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 10/2020
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X20100105

Weitere Artikel der Ausgabe 10/2020

Physics of Metals and Metallography 10/2020 Zur Ausgabe