Skip to main content
Erschienen in: Physics of Metals and Metallography 12/2020

01.12.2020 | STRENGTH AND PLASTICITY

Effect of Mn on the Phase Composition and Properties of Al–Cu–Y–Zr Alloy

verfasst von: S. M. Amer, R. Yu. Barkov, A. V. Pozdniakov

Erschienen in: Physics of Metals and Metallography | Ausgabe 12/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effect of manganese on the microstructure, phase composition, and mechanical properties of the heat-strengthened deformed Al–5.5Cu–2.0Y–0.3Zr alloy has been studied in this work. The structure of the cast alloy was shown to contain a quaternary phase enriched in copper, manganese, and yttrium with a Cu/Mn/Y ratio of 4/2/1, which corresponds to the chemical compound Al25Cu4Mn2Y. The maximum strengthening of the ingot was achieved by aging after quenching at 210°C for 5 h. Three types of precipitates, Al20Cu2Mn3 and Al3(Zr,Y), were formed in the heat-treated structure in the course of homogenization at 605°C. The size of Al3(Zr,Y) particles was 30–50 nm. The Al20Cu2Mn3 phase had a longitudinal size of 200–250 nm and a transverse size of 150–200 nm. The disc-shaped precipitates of the θ''(Al2Cu) metastable phase with a diameter of 80–200 nm and a thickness of about 5 nm formed upon aging. After rolling and annealing for 1 and 2 h, the hardness was maximum at 150°C. This was explained by a predominance of aging over softening, which retards the growth of dispersoids of Al20Cu2Mn3 and Al3(Zr,Y) phases and dispersed Al8Cu4Y and (Al,Cu)11Y3 particles of crystallization origin. At 210°C, the softening of deformed alloy prevails over the effect of aging and as a result, the hardness decreases slightly. The addition of manganese makes it possible to retain a significantly high hardness in the studied alloy at annealing temperatures up to 550°С and to increase the temperature of the onset of recrystallization to 350–400°С. After rolling followed by annealing at 150°C the alloy was shown to possess high mechanical properties: σ0.2 = 330–334 MPa, σu = 374 MPa, and δ = 3.6–5.5%.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat GOST 1583–93. Aluminum Casting Alloys (IPK Izd-vo standartov, Minsk, 2000) [in Russian]. GOST 1583–93. Aluminum Casting Alloys (IPK Izd-vo standartov, Minsk, 2000) [in Russian].
2.
Zurück zum Zitat GOST 4784–2019. Aluminum and Wrought Aluminum Alloys. Brands (IPK Izd-vo standartov, 2019) [in Russian]. GOST 4784–2019. Aluminum and Wrought Aluminum Alloys. Brands (IPK Izd-vo standartov, 2019) [in Russian].
3.
Zurück zum Zitat V. S. Zolotorevsky, N. A. Belov, and M. V. Glazoff, Casting Aluminum Alloys (Alcoa Technical Center, PA, 2007) p. 530.CrossRef V. S. Zolotorevsky, N. A. Belov, and M. V. Glazoff, Casting Aluminum Alloys (Alcoa Technical Center, PA, 2007) p. 530.CrossRef
4.
Zurück zum Zitat I. I. Novikov, Hot Brittleness of Non-Ferrous Metals and Alloys (Nauka, Moscow, 1966) [in Russian]. I. I. Novikov, Hot Brittleness of Non-Ferrous Metals and Alloys (Nauka, Moscow, 1966) [in Russian].
5.
Zurück zum Zitat V. S. Zolotorevskiy and A. V. Pozdniakov, “Determining the hot cracking index of Al–Si–Cu–Mg casting alloys calculated using the effective solidification range,” Int. J. Cast Met. Res. 27, No. 4, 193–198 (2014).CrossRef V. S. Zolotorevskiy and A. V. Pozdniakov, “Determining the hot cracking index of Al–Si–Cu–Mg casting alloys calculated using the effective solidification range,” Int. J. Cast Met. Res. 27, No. 4, 193–198 (2014).CrossRef
6.
Zurück zum Zitat V. S. Zolotorevskiy, A. V. Pozdniakov, and A. Yu. Churyu-mov, “Search for promising compositions for developing new multiphase casting alloys based on Al–Cu–Mg matrix using thermodynamic calculations and mathematic simulation,” Phys. Met. Metallogr. 113, No. 11, 1052–1060 (2012).CrossRef V. S. Zolotorevskiy, A. V. Pozdniakov, and A. Yu. Churyu-mov, “Search for promising compositions for developing new multiphase casting alloys based on Al–Cu–Mg matrix using thermodynamic calculations and mathematic simulation,” Phys. Met. Metallogr. 113, No. 11, 1052–1060 (2012).CrossRef
7.
Zurück zum Zitat A. V. Pozdnyakov, A. A. Osipenkova, D. A. Popov, S. V. Makhov, and V. I. Napalkov, “Effect of low additions of Y, Sm, Gd, Hf and Er on the structure and hardness of alloy Al–0.2% Zr–0.1% Sc,” Met. Sci. Heat Treat. 58, No. 9–10, 537–542 (2017).CrossRef A. V. Pozdnyakov, A. A. Osipenkova, D. A. Popov, S. V. Makhov, and V. I. Napalkov, “Effect of low additions of Y, Sm, Gd, Hf and Er on the structure and hardness of alloy Al–0.2% Zr–0.1% Sc,” Met. Sci. Heat Treat. 58, No. 9–10, 537–542 (2017).CrossRef
8.
Zurück zum Zitat A. V. Pozdniakov, A. A. Aytmagambetov, S. V. Makhov, and V. I. Napalkov, “Effect of impurities of Fe and Si on the structure and strengthening upon annealing of the Al–0.2% Zr–0.1% Sc alloys with and without Y additive,” Phys. Met. Metallogr. 118, No. 5, 479–484 (2017).CrossRef A. V. Pozdniakov, A. A. Aytmagambetov, S. V. Makhov, and V. I. Napalkov, “Effect of impurities of Fe and Si on the structure and strengthening upon annealing of the Al–0.2% Zr–0.1% Sc alloys with and without Y additive,” Phys. Met. Metallogr. 118, No. 5, 479–484 (2017).CrossRef
9.
Zurück zum Zitat A. V. Pozdnyakov and R. Yu. Barkov, “Effect of impurities on the phase composition and properties of a new alloy of the Al–Y–Er–Zr–Sc system,” Metallurgist 63, Nos. 1–2, 79–86 (2019).CrossRef A. V. Pozdnyakov and R. Yu. Barkov, “Effect of impurities on the phase composition and properties of a new alloy of the Al–Y–Er–Zr–Sc system,” Metallurgist 63, Nos. 1–2, 79–86 (2019).CrossRef
10.
Zurück zum Zitat A. V. Pozdniakov, R. Yu. Barkov, A. S. Prosviryakov, A. Yu. Churyumov, I. S. Golovin, and V. S. Zolotorevskiy, “Effect of Zr on the microstructure, recrystallization behavior, mechanical properties and electrical conductivity of the novel Al–Er–Y alloy,” J. Alloys Compd. 765, 1–6 (2018).CrossRef A. V. Pozdniakov, R. Yu. Barkov, A. S. Prosviryakov, A. Yu. Churyumov, I. S. Golovin, and V. S. Zolotorevskiy, “Effect of Zr on the microstructure, recrystallization behavior, mechanical properties and electrical conductivity of the novel Al–Er–Y alloy,” J. Alloys Compd. 765, 1–6 (2018).CrossRef
11.
Zurück zum Zitat A. V. Pozdniakov and R. Yu. Barkov, “Microstructure and mechanical properties of novel Al–Y–Sc alloys with high thermal stability and electrical conductivity,” J. Mater. Sci. Technol. 36, 1–6 (2020).CrossRef A. V. Pozdniakov and R. Yu. Barkov, “Microstructure and mechanical properties of novel Al–Y–Sc alloys with high thermal stability and electrical conductivity,” J. Mater. Sci. Technol. 36, 1–6 (2020).CrossRef
12.
Zurück zum Zitat A. V. Pozdniakov, V. Yarasu, R. Yu. Barkov, O. A. Yakov-tseva, S. V. Makhov, and V. I. Napalkov, “Microstructure and mechanical properties of novel Al–Mg–Mn–Zr–Sc–Er alloy,” Mater. Lett. 202, 116–119 (2017).CrossRef A. V. Pozdniakov, V. Yarasu, R. Yu. Barkov, O. A. Yakov-tseva, S. V. Makhov, and V. I. Napalkov, “Microstructure and mechanical properties of novel Al–Mg–Mn–Zr–Sc–Er alloy,” Mater. Lett. 202, 116–119 (2017).CrossRef
13.
Zurück zum Zitat M. Song, K. Du, Z. Y. Huang, H. Huang, Z. R. Nie, and H. Q. Ye, “Deformation-induced dissolution and growth of precipitates in an Al–Mg–Er alloy during high-cycle fatigue,” Acta Mater. 81, 409–419 (2014).CrossRef M. Song, K. Du, Z. Y. Huang, H. Huang, Z. R. Nie, and H. Q. Ye, “Deformation-induced dissolution and growth of precipitates in an Al–Mg–Er alloy during high-cycle fatigue,” Acta Mater. 81, 409–419 (2014).CrossRef
14.
Zurück zum Zitat H. L. Hao, D. R. Ni, Z. Zhang, D. Wang, B. L. Xiao, and Z. Y. Ma, “Microstructure and mechanical properties of Al–Mg–Er sheets jointed by friction stir welding,” Mater. Des. 52, 706–712 (2013).CrossRef H. L. Hao, D. R. Ni, Z. Zhang, D. Wang, B. L. Xiao, and Z. Y. Ma, “Microstructure and mechanical properties of Al–Mg–Er sheets jointed by friction stir welding,” Mater. Des. 52, 706–712 (2013).CrossRef
15.
Zurück zum Zitat S. P. Wen, W. Wang, W. H. Zhao, X. L. Wu, K. Y. Gao, H. Huang, and Z. R. Nie, “Precipitation hardening and recrystallization behavior of Al–Mg–Er–Zr alloys,” J. Alloys Compd. 687, 143–151 (2016).CrossRef S. P. Wen, W. Wang, W. H. Zhao, X. L. Wu, K. Y. Gao, H. Huang, and Z. R. Nie, “Precipitation hardening and recrystallization behavior of Al–Mg–Er–Zr alloys,” J. Alloys Compd. 687, 143–151 (2016).CrossRef
16.
Zurück zum Zitat R. Yu. Barkov, A. V. Pozdniakov, E. Tkachuk, and V. S. Zolotorevskiy, “Effect of Y on microstructure and mechanical properties of Al–Mg–Mn–Zr–Sc alloy with low Sc content,” Mater. Lett. 217, 135–138 (2018).CrossRef R. Yu. Barkov, A. V. Pozdniakov, E. Tkachuk, and V. S. Zolotorevskiy, “Effect of Y on microstructure and mechanical properties of Al–Mg–Mn–Zr–Sc alloy with low Sc content,” Mater. Lett. 217, 135–138 (2018).CrossRef
17.
Zurück zum Zitat M. Li, H. Wang, Z. Wei, and Z. Zhu, “The effect of Y on the hot-tearing resistance of Al–5 wt % Cu based alloy,” Mater. Des. 31, 2483–2487 (2010).CrossRef M. Li, H. Wang, Z. Wei, and Z. Zhu, “The effect of Y on the hot-tearing resistance of Al–5 wt % Cu based alloy,” Mater. Des. 31, 2483–2487 (2010).CrossRef
18.
Zurück zum Zitat N. A. Belov, A. V. Khvan, and A. N. Alabin, “Microstructure and phase composition of Al–Ce–Cu alloys in the Al-rich corner,” Mater. Sci. Forum. 519–521(Part 1), 395–400 (2006).CrossRef N. A. Belov, A. V. Khvan, and A. N. Alabin, “Microstructure and phase composition of Al–Ce–Cu alloys in the Al-rich corner,” Mater. Sci. Forum. 519–521(Part 1), 395–400 (2006).CrossRef
19.
Zurück zum Zitat N. A. Belov and A. V. Khvan, “The ternary Al–Ce–Cu phase diagram in the aluminum-rich corner,” Acta Mater. 55, 5473–5482 (2007).CrossRef N. A. Belov and A. V. Khvan, “The ternary Al–Ce–Cu phase diagram in the aluminum-rich corner,” Acta Mater. 55, 5473–5482 (2007).CrossRef
20.
Zurück zum Zitat A. V. Pozdniakov and R. Y. Barkov, “Microstructure and materials characterisation of the novel Al–Cu–Y alloy,” Mater. Sci. Techol. 34, No. 12, 1489–1496 (2018).CrossRef A. V. Pozdniakov and R. Y. Barkov, “Microstructure and materials characterisation of the novel Al–Cu–Y alloy,” Mater. Sci. Techol. 34, No. 12, 1489–1496 (2018).CrossRef
21.
Zurück zum Zitat S. M. Amer, R. Y. Barkov, O. A. Yakovtseva, and A. V. Pozdniakov, “Comparative analysis of structure and properties of quasibinary Al–6.5Cu–2.3Y and Al–6Cu–4.05Er alloys,” Phys. Met. Metallogr. 121, No. 5, 476–482 (2020).CrossRef S. M. Amer, R. Y. Barkov, O. A. Yakovtseva, and A. V. Pozdniakov, “Comparative analysis of structure and properties of quasibinary Al–6.5Cu–2.3Y and Al–6Cu–4.05Er alloys,” Phys. Met. Metallogr. 121, No. 5, 476–482 (2020).CrossRef
22.
Zurück zum Zitat A. V. Pozdnyakov, R. Yu. Barkov, Zh. Sarsenbaev, S. M. Amer, and A. S. Prosviryakov, “Evolution of microstructure and mechanical properties of a new Al–Cu–Er wrought alloy,” Phys. Met. Metallogr. 120, No. 6, 614–619 (2019).CrossRef A. V. Pozdnyakov, R. Yu. Barkov, Zh. Sarsenbaev, S. M. Amer, and A. S. Prosviryakov, “Evolution of microstructure and mechanical properties of a new Al–Cu–Er wrought alloy,” Phys. Met. Metallogr. 120, No. 6, 614–619 (2019).CrossRef
23.
Zurück zum Zitat S. M. Amer, R. Y. Barkov, and A. V. Pozdniakov, “Effect of impurities on the phase composition and properties of a wrought Al–6% Cu–4.05% Er alloy,” Phys. Met. Metallogr. 121, No. 5, 495–499 (2020).CrossRef S. M. Amer, R. Y. Barkov, and A. V. Pozdniakov, “Effect of impurities on the phase composition and properties of a wrought Al–6% Cu–4.05% Er alloy,” Phys. Met. Metallogr. 121, No. 5, 495–499 (2020).CrossRef
24.
Zurück zum Zitat A. V. Pozdniakov, R. Yu. Barkov, S. M. Amer, V. S. Levchenko, A. D. Kotov, and A. V. Mikhaylovskaya, “Microstructure, mechanical properties and superplasticity of the Al–Cu–Y–Zr alloy,” Mater. Sci. Eng., A 758, 28–35 (2019).CrossRef A. V. Pozdniakov, R. Yu. Barkov, S. M. Amer, V. S. Levchenko, A. D. Kotov, and A. V. Mikhaylovskaya, “Microstructure, mechanical properties and superplasticity of the Al–Cu–Y–Zr alloy,” Mater. Sci. Eng., A 758, 28–35 (2019).CrossRef
25.
Zurück zum Zitat S. M. Amer, R. Yu. Barkov, O. A. Yakovtseva, I. S. Loginova, and A. V. Pozdniakov, “Effect of Zr on microstructure and mechanical properties of the Al–Cu–Er alloy,” Mater. Sci. Technol. 36, No. 4, 453–459 (2020).CrossRef S. M. Amer, R. Yu. Barkov, O. A. Yakovtseva, I. S. Loginova, and A. V. Pozdniakov, “Effect of Zr on microstructure and mechanical properties of the Al–Cu–Er alloy,” Mater. Sci. Technol. 36, No. 4, 453–459 (2020).CrossRef
26.
Zurück zum Zitat S. M. Amer, O. A. Yakovtseva, I. S. Loginova, S. V. Medvedeva, A. S. Prosviryakov, A. I. Bazlov, R. Yu. Barkov, and A. V. Pozdniakov, “The phase composition and mechanical properties of the novel precipitation-strengthening Al–Cu–Er–Mn–Zr alloy,” Appl. Sci. 10, No. 15, 5345–5353 (2020).CrossRef S. M. Amer, O. A. Yakovtseva, I. S. Loginova, S. V. Medvedeva, A. S. Prosviryakov, A. I. Bazlov, R. Yu. Barkov, and A. V. Pozdniakov, “The phase composition and mechanical properties of the novel precipitation-strengthening Al–Cu–Er–Mn–Zr alloy,” Appl. Sci. 10, No. 15, 5345–5353 (2020).CrossRef
27.
Zurück zum Zitat A. V. Mikhaylovskaya, A. A. Kishchik, A. D. Kotov, O. V. Rofman, and N. Yu. Tabachkova, “Precipitation behavior and high strain rate superplasticity in a novel fine-grained aluminum based alloy,” Mater. Sci. Eng., A 760, 37–46 (2019).CrossRef A. V. Mikhaylovskaya, A. A. Kishchik, A. D. Kotov, O. V. Rofman, and N. Yu. Tabachkova, “Precipitation behavior and high strain rate superplasticity in a novel fine-grained aluminum based alloy,” Mater. Sci. Eng., A 760, 37–46 (2019).CrossRef
28.
Zurück zum Zitat A. G. Mochugovskiy, N. Yu. Tabachkova, and A. V. Mikhaylovskaya, “Annealing induced precipitation of nanoscale icosahedral quasicrystals in aluminum based alloy,” Mater. Lett. 247, 200–203 (2019).CrossRef A. G. Mochugovskiy, N. Yu. Tabachkova, and A. V. Mikhaylovskaya, “Annealing induced precipitation of nanoscale icosahedral quasicrystals in aluminum based alloy,” Mater. Lett. 247, 200–203 (2019).CrossRef
29.
Zurück zum Zitat A. A. Kishchik, A. V. Mikhaylovskaya, V. S. Levchenko, and V. K. Portnoy, “Formation of microstructure and the superplasticity of Al–Mg-based alloys,” Phys. Met. Metallogr. 118, No. 1, 96–103 (2017).CrossRef A. A. Kishchik, A. V. Mikhaylovskaya, V. S. Levchenko, and V. K. Portnoy, “Formation of microstructure and the superplasticity of Al–Mg-based alloys,” Phys. Met. Metallogr. 118, No. 1, 96–103 (2017).CrossRef
30.
Zurück zum Zitat GOST 21631–76. Sheets Made of Aluminum and Aluminum Alloys. Technical Conditions (Standartinform, 2008) [in Russian] GOST 21631–76. Sheets Made of Aluminum and Aluminum Alloys. Technical Conditions (Standartinform, 2008) [in Russian]
31.
Zurück zum Zitat V. S. Zolotorevskiy, R. I. Dobrojinskaja, V. V. Cheverikin, E. A. Khamnagdaeva, A. V. Pozdniakov, V. S. Levchenko, and E. S. Besogonova, “Evolution of structure and mechanical properties of Al–4.7Mg–0.32Mn–0.21Sc–0.09Zr alloy sheets after accumulated deformation during rolling,” Phys. Met. Metallogr. 117, No. 11, 1163–1169 (2016).CrossRef V. S. Zolotorevskiy, R. I. Dobrojinskaja, V. V. Cheverikin, E. A. Khamnagdaeva, A. V. Pozdniakov, V. S. Levchenko, and E. S. Besogonova, “Evolution of structure and mechanical properties of Al–4.7Mg–0.32Mn–0.21Sc–0.09Zr alloy sheets after accumulated deformation during rolling,” Phys. Met. Metallogr. 117, No. 11, 1163–1169 (2016).CrossRef
32.
Zurück zum Zitat V. S. Zolotorevskiy, R. I. Dobrojinskaja, V. V. Cheverikin, E. A. Khamnagdaeva, A. V. Pozdniakov, V. S. Levchenko, and E. S. Besogonova, “Strength and substructure of Al–4.7Mg–0.32Mn–0.21Sc–0.09Zr alloy sheets,” Phys. Met. Metallogr. 118, No. 4, 407–414 (2017).CrossRef V. S. Zolotorevskiy, R. I. Dobrojinskaja, V. V. Cheverikin, E. A. Khamnagdaeva, A. V. Pozdniakov, V. S. Levchenko, and E. S. Besogonova, “Strength and substructure of Al–4.7Mg–0.32Mn–0.21Sc–0.09Zr alloy sheets,” Phys. Met. Metallogr. 118, No. 4, 407–414 (2017).CrossRef
Metadaten
Titel
Effect of Mn on the Phase Composition and Properties of Al–Cu–Y–Zr Alloy
verfasst von
S. M. Amer
R. Yu. Barkov
A. V. Pozdniakov
Publikationsdatum
01.12.2020
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 12/2020
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X20120029

Weitere Artikel der Ausgabe 12/2020

Physics of Metals and Metallography 12/2020 Zur Ausgabe