Skip to main content
Erschienen in: Physics of Metals and Metallography 12/2020

01.12.2020 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

The Effect of Graphene Additives on the Structure and Properties of Aluminum

verfasst von: I. G. Shirinkina, I. G. Brodova, D. Yu. Rasposienko, R. V. Muradymov, L. A. Elshina, E. V. Shorokhov, S. V. Razorenov, G. V. Garkushin

Erschienen in: Physics of Metals and Metallography | Ausgabe 12/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Using high-resolution scanning and transmission electron microscopy methods, the morphological and size characteristics of the structural components of the composites synthesized on the basis of aluminum with a graphene microadditive in a commercial aluminum melt under a layer of molten salt are studied. An experiment on the dynamic compression of a composite by the Kolsky method was performed, the evolution of a cast structure during high-rate deformation is studied, and mechanical characteristics in the range of deformation rates έ = 1.8–4.7 × 103 s–1 were measured. The dynamic characteristics of the composite were measured under conditions of loading with planar shock waves (έ = 5 × 105 s–1) for the first time. The dynamic properties of the composite are compared as functions of the graphene content in the aluminum matrix.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. A. Zabolotskii and S. E. Salibekov, “Development of Al–C composite materials,” Met. Sci. Heat Treat. 20, 841–844 (1978).CrossRef A. A. Zabolotskii and S. E. Salibekov, “Development of Al–C composite materials,” Met. Sci. Heat Treat. 20, 841–844 (1978).CrossRef
2.
Zurück zum Zitat Yu. A. Kvashnina, D. G. Kvashnin, A. G. Kvashnin, and P. B. Sorokin, “New allotropic forms of carbon based on C60 and C20 fullerenes with specific mechanical characteristics,” JETP Lett. 105, 419–425 (2017).CrossRef Yu. A. Kvashnina, D. G. Kvashnin, A. G. Kvashnin, and P. B. Sorokin, “New allotropic forms of carbon based on C60 and C20 fullerenes with specific mechanical characteristics,” JETP Lett. 105, 419–425 (2017).CrossRef
3.
Zurück zum Zitat K. Naplocha and K. Granat, “Dry sliding wear of Al/Saffil/C hybrid metal matrix composites,” Wear 265, 1734–1740 (2008).CrossRef K. Naplocha and K. Granat, “Dry sliding wear of Al/Saffil/C hybrid metal matrix composites,” Wear 265, 1734–1740 (2008).CrossRef
4.
Zurück zum Zitat G. S. Bezruchko, S. V. Razorenov, and M. Yu. Popov, “Effect of a fullerene C60 addition on the strength properties of nanocrystalline copper and aluminum under shock-wave loading,” Tech. Phys. 59, 378–383 (2014).CrossRef G. S. Bezruchko, S. V. Razorenov, and M. Yu. Popov, “Effect of a fullerene C60 addition on the strength properties of nanocrystalline copper and aluminum under shock-wave loading,” Tech. Phys. 59, 378–383 (2014).CrossRef
5.
Zurück zum Zitat A. G. Kvashnin, L. A. Chernozatonsrii, B. I. Yakobson, and P. B. Sorokin, “Phase diagram of qasi-two-dimensional carbon,” Nano Lett. 14 (2), 18741–17745 (2014).CrossRef A. G. Kvashnin, L. A. Chernozatonsrii, B. I. Yakobson, and P. B. Sorokin, “Phase diagram of qasi-two-dimensional carbon,” Nano Lett. 14 (2), 18741–17745 (2014).CrossRef
6.
Zurück zum Zitat A. V. Eletskii, I. M. Iskandarova, A. A. Knizhnik, and D. N. Krasikov, “Graphene: fabrication methods and thermophysical properties,” Phys.-Usp. 54, 227–258 (2011).CrossRef A. V. Eletskii, I. M. Iskandarova, A. A. Knizhnik, and D. N. Krasikov, “Graphene: fabrication methods and thermophysical properties,” Phys.-Usp. 54, 227–258 (2011).CrossRef
7.
Zurück zum Zitat L. A. Chernozatonskii, P. B. Sorokin, and A. A. Artukh, “Novel graphene-based nanostructures: physicochemical properties and applications,” Russ. Chem. Rev. 83, 251–279 (2014).CrossRef L. A. Chernozatonskii, P. B. Sorokin, and A. A. Artukh, “Novel graphene-based nanostructures: physicochemical properties and applications,” Russ. Chem. Rev. 83, 251–279 (2014).CrossRef
8.
Zurück zum Zitat J. Wang, Zh. Li, G. Fan, H. Pan, Zh. Chen, and D. Zhang, “Reinforcement with graphene nanosheets in aluminum matrix composites,” Scr. Mater. 66, 594–597 (2012).CrossRef J. Wang, Zh. Li, G. Fan, H. Pan, Zh. Chen, and D. Zhang, “Reinforcement with graphene nanosheets in aluminum matrix composites,” Scr. Mater. 66, 594–597 (2012).CrossRef
9.
Zurück zum Zitat M. Bastwros, G.-Y. Kim, C. Zhu, K. Zhang, Sh. Wang, X. Tang, and X. Wang, “Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering,” Composites, Part B 60, 111–118 (2014).CrossRef M. Bastwros, G.-Y. Kim, C. Zhu, K. Zhang, Sh. Wang, X. Tang, and X. Wang, “Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering,” Composites, Part B 60, 111–118 (2014).CrossRef
10.
Zurück zum Zitat M. Rashad, F. Pan, A. Tang, and M. Asif, “Effect of graphene nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method,” Progr. Nat. Sci.: Mater. Int. 24, 101–108 (2014).CrossRef M. Rashad, F. Pan, A. Tang, and M. Asif, “Effect of graphene nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method,” Progr. Nat. Sci.: Mater. Int. 24, 101–108 (2014).CrossRef
11.
Zurück zum Zitat M. Fattahi, A. R. Gholami, A. Eynalvandpour, E. Ahmadi, Y. Fattahi, and S. Akhavan, “Improved microstructure and mechanical properties in gas tungsten arc welded aluminum joints by using graphene nanosheets/aluminum composite filler wires,” Micron 64, 20–27 (2014).CrossRef M. Fattahi, A. R. Gholami, A. Eynalvandpour, E. Ahmadi, Y. Fattahi, and S. Akhavan, “Improved microstructure and mechanical properties in gas tungsten arc welded aluminum joints by using graphene nanosheets/aluminum composite filler wires,” Micron 64, 20–27 (2014).CrossRef
12.
Zurück zum Zitat R. Pérez-Bustamante, D. Bolaños-Morales, J. Bonilla-Martínez, I. Estrada-Guel, and R. Martínez-Sánchez, “Microstructural and hardness behavior of graphene-nanoplatelets/aluminum composites synthesized by mechanical alloying,” J. Alloys Compd. 615, 578–S582 (2014).CrossRef R. Pérez-Bustamante, D. Bolaños-Morales, J. Bonilla-Martínez, I. Estrada-Guel, and R. Martínez-Sánchez, “Microstructural and hardness behavior of graphene-nanoplatelets/aluminum composites synthesized by mechanical alloying,” J. Alloys Compd. 615, 578–S582 (2014).CrossRef
13.
Zurück zum Zitat J. L. Li, Y. C. Xiong, X. D. Wang, S. J. Yan, C. Yang, W. W. He, J. Z. Chen, S. Q. Wang, X. Y. Zhang, and S. L. Dai, “Microstructure and tensile properties of bulk nanostructured aluminum/graphene composites prepared via cryomilling,” Mater. Sci. Eng. A 626, 400–405 (2015).CrossRef J. L. Li, Y. C. Xiong, X. D. Wang, S. J. Yan, C. Yang, W. W. He, J. Z. Chen, S. Q. Wang, X. Y. Zhang, and S. L. Dai, “Microstructure and tensile properties of bulk nanostructured aluminum/graphene composites prepared via cryomilling,” Mater. Sci. Eng. A 626, 400–405 (2015).CrossRef
14.
Zurück zum Zitat S. F. Bartolucci, J. Paras, M. A. Rafiee, J. Rafiee, S. Lee, D. Kapoor, and N. Koratkar, “Graphene–aluminum nanocomposites,” Mater. Sci. Eng., A 528, 7933–7937 (2011).CrossRef S. F. Bartolucci, J. Paras, M. A. Rafiee, J. Rafiee, S. Lee, D. Kapoor, and N. Koratkar, “Graphene–aluminum nanocomposites,” Mater. Sci. Eng., A 528, 7933–7937 (2011).CrossRef
15.
Zurück zum Zitat L. A. Elshina and R. V. Muradymov, RF Patent No. 2623410, (2017). L. A. Elshina and R. V. Muradymov, RF Patent No. 2623410, (2017).
16.
Zurück zum Zitat L. A. Yolshina, R. V. Muradymov, I. V. Korsun, G. A. Yakovlev, and S. V. Smirnov, “Novel aluminum–graphene and aluminum–graphite metallic composite materials: synthesis and properties,” J. Alloys Compd. 663, 449–459 (2016).CrossRef L. A. Yolshina, R. V. Muradymov, I. V. Korsun, G. A. Yakovlev, and S. V. Smirnov, “Novel aluminum–graphene and aluminum–graphite metallic composite materials: synthesis and properties,” J. Alloys Compd. 663, 449–459 (2016).CrossRef
17.
Zurück zum Zitat M. Vanin, J. J. Mortensen, A. K. Kelkkanen, J. M. Garcia-Lastra, K. S. Thygesen, and K. W. Jacobsen, “Graphene on metals: a van der Waals density functional study,” Phys. Rev. B 81, 081408 (2010).CrossRef M. Vanin, J. J. Mortensen, A. K. Kelkkanen, J. M. Garcia-Lastra, K. S. Thygesen, and K. W. Jacobsen, “Graphene on metals: a van der Waals density functional study,” Phys. Rev. B 81, 081408 (2010).CrossRef
18.
Zurück zum Zitat R. Sharma, N. Chadha, and P. Saini, “Determination of defect density, crystallite size and number of graphene layers in graphene analogues using X-ray diffraction and Raman spectroscopy,” Indian J. Pure Appl. Phys. 55, 625–629 (2017). R. Sharma, N. Chadha, and P. Saini, “Determination of defect density, crystallite size and number of graphene layers in graphene analogues using X-ray diffraction and Raman spectroscopy,” Indian J. Pure Appl. Phys. 55, 625–629 (2017).
19.
Zurück zum Zitat A. N. Petrova, I. G. Brodova, O. A. Plekhov, O. B. Naimark, and E. V. Shorokhov, “Mechanical properties and energy dissipation in ultrafine-grained AMts and V95 aluminum alloys during dynamic compression,” Tech. Phys. 59, 989–996 (2014).CrossRef A. N. Petrova, I. G. Brodova, O. A. Plekhov, O. B. Naimark, and E. V. Shorokhov, “Mechanical properties and energy dissipation in ultrafine-grained AMts and V95 aluminum alloys during dynamic compression,” Tech. Phys. 59, 989–996 (2014).CrossRef
20.
Zurück zum Zitat A. N. Petrova, I. G. Brodova, S. V. Razorenov, E. V. Shorokhov, and T. K. Akopyan, “Mechanical properties of the Al–Zn–Mg–Fe–Ni alloy of eutectic type at different strain rates,” Phys. Met. Metallogr. 120, 1221–1227 (2019).CrossRef A. N. Petrova, I. G. Brodova, S. V. Razorenov, E. V. Shorokhov, and T. K. Akopyan, “Mechanical properties of the Al–Zn–Mg–Fe–Ni alloy of eutectic type at different strain rates,” Phys. Met. Metallogr. 120, 1221–1227 (2019).CrossRef
21.
Zurück zum Zitat N. S. Saenko and A. M. Ziatdinov, “Evaluation of the size of graphene nanoparticles from the X-ray diffraction spectra of activated carbon fibers without use of the Scherrer equation,” in Proceedings of the Eight International Conference “Carbon: Fundamental Problems in Science, Material Science, and Technology,” Abstracts of Papers (Troitsk, 2012), pp. 422–427. N. S. Saenko and A. M. Ziatdinov, “Evaluation of the size of graphene nanoparticles from the X-ray diffraction spectra of activated carbon fibers without use of the Scherrer equation,” in Proceedings of the Eight International Conference “Carbon: Fundamental Problems in Science, Material Science, and Technology,” Abstracts of Papers (Troitsk, 2012), pp. 422–427.
22.
Zurück zum Zitat L. M. Barker and Hollenbach, R. E. “Laser interferometer for measuring high velocities of any reflecting surface,” J. Appl. Phys. 43, 4669–4675 (1972).CrossRef L. M. Barker and Hollenbach, R. E. “Laser interferometer for measuring high velocities of any reflecting surface,” J. Appl. Phys. 43, 4669–4675 (1972).CrossRef
Metadaten
Titel
The Effect of Graphene Additives on the Structure and Properties of Aluminum
verfasst von
I. G. Shirinkina
I. G. Brodova
D. Yu. Rasposienko
R. V. Muradymov
L. A. Elshina
E. V. Shorokhov
S. V. Razorenov
G. V. Garkushin
Publikationsdatum
01.12.2020
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 12/2020
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X21010117

Weitere Artikel der Ausgabe 12/2020

Physics of Metals and Metallography 12/2020 Zur Ausgabe