Skip to main content
Erschienen in: Physics of Metals and Metallography 7/2021

01.07.2021 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Structure and Energy of Symmetric Tilt Boundaries with the 〈110〉 Axis in Ni and the Energy of Formation of Vacancies in Grain Boundaries

verfasst von: M. G. Urazaliev, M. E. Stupak, V. V. Popov

Erschienen in: Physics of Metals and Metallography | Ausgabe 7/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fourteen symmetric tilt boundaries with the 〈110〉 axis in Ni have been investigated by computer simulation with an embedded atom potential. The structures, energies, and widths of the grain boundaries have been calculated using the method of molecular statics simulation. It is shown that the structure of symmetric tilt boundaries with the 〈110〉 axis can be represented by a limited number of structure components. The stability of boundary structures at elevated temperatures has been studied using the molecular dynamics method. The energies of formation of vacancies in grain boundaries have been calculated.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. P. Sutton and R. W. Balluffi, Interfaces in Crystalline Materials (Clarendon, Oxford, 1995). A. P. Sutton and R. W. Balluffi, Interfaces in Crystalline Materials (Clarendon, Oxford, 1995).
2.
Zurück zum Zitat H. Van Swygenhoven, D. Farkas, and A. Caro, “Grain-boundary structures in polycrystalline metals at the nanoscale,” Phys. Rev. 62, No. 2, 831–838 (2000).CrossRef H. Van Swygenhoven, D. Farkas, and A. Caro, “Grain-boundary structures in polycrystalline metals at the nanoscale,” Phys. Rev. 62, No. 2, 831–838 (2000).CrossRef
3.
Zurück zum Zitat A. Movahedi-Rad and R. Alizadeh, “Simulating grain boundary energy using molecular dynamics,” J. Mod. Phys. 5, 627–632 (2014).CrossRef A. Movahedi-Rad and R. Alizadeh, “Simulating grain boundary energy using molecular dynamics,” J. Mod. Phys. 5, 627–632 (2014).CrossRef
4.
Zurück zum Zitat J. D. Rittner and D. N. Seidman, “〈110〉 symmetric tilt grain-boundary structures in fcc metals with low stacking-fault energies,” Phys. Rev. B 54, No. 10, 6999–7015 (1996).CrossRef J. D. Rittner and D. N. Seidman, “〈110〉 symmetric tilt grain-boundary structures in fcc metals with low stacking-fault energies,” Phys. Rev. B 54, No. 10, 6999–7015 (1996).CrossRef
5.
Zurück zum Zitat S. M. Foiles, M. I. Baskes, and M. S. Daw, “Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys,” Phys. Rev. B 33, No. 5, 7983 (1986).CrossRef S. M. Foiles, M. I. Baskes, and M. S. Daw, “Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys,” Phys. Rev. B 33, No. 5, 7983 (1986).CrossRef
6.
Zurück zum Zitat S. Plimton, “Fast parallel algorithms for short range molecular dynamics,” J. Comp. Phys. 117, 1–19 (1995).CrossRef S. Plimton, “Fast parallel algorithms for short range molecular dynamics,” J. Comp. Phys. 117, 1–19 (1995).CrossRef
7.
Zurück zum Zitat M. E. Stupak, M. G. Urazaliev, and V. V. Popov, “Structure and energy of 〈110〉 symmetric tilt boundaries in polycrystalline tungsten,” Phys. Met. Metallogr. 121, No. 8, 797–803 (2020).CrossRef M. E. Stupak, M. G. Urazaliev, and V. V. Popov, “Structure and energy of 〈110〉 symmetric tilt boundaries in polycrystalline tungsten,” Phys. Met. Metallogr. 121, No. 8, 797–803 (2020).CrossRef
8.
Zurück zum Zitat M. A. Tschopp and D. L. McDowell, “Structures and energies of Sigma 3 asymmetric tilt grain boundaries in Cu and Al,” Philos. Mag. 87, 3147–3173 (2007).CrossRef M. A. Tschopp and D. L. McDowell, “Structures and energies of Sigma 3 asymmetric tilt grain boundaries in Cu and Al,” Philos. Mag. 87, 3147–3173 (2007).CrossRef
9.
Zurück zum Zitat Y. Mishin, D. Farkas, M. J. Mehl, and D. A. Papaconstantopoulos, “Interatomic potentials for monoatomic metals from experimental data and ab initio calculations,” Phys. Rev. B 59, No. 5, 3393–3407 (1999).CrossRef Y. Mishin, D. Farkas, M. J. Mehl, and D. A. Papaconstantopoulos, “Interatomic potentials for monoatomic metals from experimental data and ab initio calculations,” Phys. Rev. B 59, No. 5, 3393–3407 (1999).CrossRef
10.
Zurück zum Zitat X. W. Zhou, R. A. Johnson, and H. N. G. Wadley, “Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers,” Phys. Rev. B 69, No. 14, 144113 (2004).CrossRef X. W. Zhou, R. A. Johnson, and H. N. G. Wadley, “Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers,” Phys. Rev. B 69, No. 14, 144113 (2004).CrossRef
11.
Zurück zum Zitat R. E. Stoller, A. Tamm, L. K. Béland, G. D. Samolyuk, G. M. Stocks, A. Caro, L. V. Slipchenko, Y. N. Osetsky, A. Aabloo, M. Klintenberg, and Y. Wang, “Impact of short-range forces on defect production from high-energy collisions,” J. Chem. Theory Comput. 12, No. 6, 2871–2879 (2016).CrossRef R. E. Stoller, A. Tamm, L. K. Béland, G. D. Samolyuk, G. M. Stocks, A. Caro, L. V. Slipchenko, Y. N. Osetsky, A. Aabloo, M. Klintenberg, and Y. Wang, “Impact of short-range forces on defect production from high-energy collisions,” J. Chem. Theory Comput. 12, No. 6, 2871–2879 (2016).CrossRef
12.
Zurück zum Zitat M. I. Mendelev, M. J. Kramer, S. G. Hao, K. M. Ho, and C. Z. Wang, “Development of interatomic potentials appropriate for simulation of liquid and glass properties of NiZr2 alloy,” Philos. Mag. 92, No. 35, 4454–4469 (2012).CrossRef M. I. Mendelev, M. J. Kramer, S. G. Hao, K. M. Ho, and C. Z. Wang, “Development of interatomic potentials appropriate for simulation of liquid and glass properties of NiZr2 alloy,” Philos. Mag. 92, No. 35, 4454–4469 (2012).CrossRef
13.
Zurück zum Zitat S. S. Gorelik, Yu. A. Skakov, and L. N. Rastorguev, X‑ray Diffraction and Electron Optic Analysis: Textbook for Universities, 4th ed. (MISIS, Moscow, 2002) [in Russian]. S. S. Gorelik, Yu. A. Skakov, and L. N. Rastorguev, X‑ray Diffraction and Electron Optic Analysis: Textbook for Universities, 4th ed. (MISIS, Moscow, 2002) [in Russian].
14.
Zurück zum Zitat Simons G., Wang H., Single Crystal Elastic Constants and Calculated Aggregate Properties (MIT Press, Cambridge, 1977). Simons G., Wang H., Single Crystal Elastic Constants and Calculated Aggregate Properties (MIT Press, Cambridge, 1977).
15.
Zurück zum Zitat Metal Reference Book, 5th ed., Ed. by C. J. Smith (Butterworth, London, 1976). Metal Reference Book, 5th ed., Ed. by C. J. Smith (Butterworth, London, 1976).
16.
Zurück zum Zitat W. Wycisk and M. J. Feller-Kniepmeier, “Quenching experiments in high purity Ni,” Nucl. Mater. 69, Nos. 1–2, 616–619 (1978).CrossRef W. Wycisk and M. J. Feller-Kniepmeier, “Quenching experiments in high purity Ni,” Nucl. Mater. 69, Nos. 1–2, 616–619 (1978).CrossRef
17.
Zurück zum Zitat L. E. Murr, Interfacial Phenomena in Metals and Alloys (Addison-Wesley, Advanced Book Program Reading, 1975). L. E. Murr, Interfacial Phenomena in Metals and Alloys (Addison-Wesley, Advanced Book Program Reading, 1975).
18.
Zurück zum Zitat A. Stukowski, “Visualization and analysis of atomistic simulation data with OVITO – the Open Visualization Tool Modelling Simul,” Mater. Sci. Eng. 18, 015012 (2010). A. Stukowski, “Visualization and analysis of atomistic simulation data with OVITO – the Open Visualization Tool Modelling Simul,” Mater. Sci. Eng. 18, 015012 (2010).
19.
Zurück zum Zitat N. Takata, K. Ikeda, F. Yoshida, H. Nakashima, and H. Abe, “Grain boundary structure and its energy of 〈110〉 symmetric tilt boundary in copper,” Mater. Sci. Forum 467–470, 807–812 (2004).CrossRef N. Takata, K. Ikeda, F. Yoshida, H. Nakashima, and H. Abe, “Grain boundary structure and its energy of 〈110〉 symmetric tilt boundary in copper,” Mater. Sci. Forum 467470, 807–812 (2004).CrossRef
20.
Zurück zum Zitat J. Chen and A. M. Dongare, “Role of grain boundary character on oxygen and hydrogen segregation-induced embrittlement in polycrystalline Ni,” J. Mater. Sci. 52, 30–45 (2017).CrossRef J. Chen and A. M. Dongare, “Role of grain boundary character on oxygen and hydrogen segregation-induced embrittlement in polycrystalline Ni,” J. Mater. Sci. 52, 30–45 (2017).CrossRef
21.
Zurück zum Zitat W. R. Tyson and W. A. Miller, “Surface free energies of solid metals: Estimation from liquid surface tension measurements,” Surf. Sci. 62, No. 1, 267–276 (1977).CrossRef W. R. Tyson and W. A. Miller, “Surface free energies of solid metals: Estimation from liquid surface tension measurements,” Surf. Sci. 62, No. 1, 267–276 (1977).CrossRef
22.
Zurück zum Zitat T. Surholt, Yu. Mishin, and Chr. Herzig, “Grain-boundary diffusion and segregation of gold in copper: Investigation in type-B and type-C kinetic regimes,” Phys. Rev. B 50, No. 6, 3577–3587 (1994).CrossRef T. Surholt, Yu. Mishin, and Chr. Herzig, “Grain-boundary diffusion and segregation of gold in copper: Investigation in type-B and type-C kinetic regimes,” Phys. Rev. B 50, No. 6, 3577–3587 (1994).CrossRef
23.
Zurück zum Zitat V. S. Divinski, G. Reglitz, and G. Wilde, “Grain boundary self-diffusion in polycrystalline nickel of different purity levels,” Acta Mater. 58, 386–395 (2010).CrossRef V. S. Divinski, G. Reglitz, and G. Wilde, “Grain boundary self-diffusion in polycrystalline nickel of different purity levels,” Acta Mater. 58, 386–395 (2010).CrossRef
24.
Zurück zum Zitat D. Prokoshkina, V. A. Esin, G. Wilde, and S. V. Divinski, “Grain boundary width, energy and self-diffusion in nickel: effect of material purity,” Acta Mater. 61, No. 14, 5188–5197 (2013).CrossRef D. Prokoshkina, V. A. Esin, G. Wilde, and S. V. Divinski, “Grain boundary width, energy and self-diffusion in nickel: effect of material purity,” Acta Mater. 61, No. 14, 5188–5197 (2013).CrossRef
25.
Zurück zum Zitat G. J. Thomas, R. W. Siegel, and J. A. Eastman, “Grain boundaries in nanophase palladium: High resolution electron microscopy and image simulation,” Scr. Metall. Mater. 24, 201–206 (1990).CrossRef G. J. Thomas, R. W. Siegel, and J. A. Eastman, “Grain boundaries in nanophase palladium: High resolution electron microscopy and image simulation,” Scr. Metall. Mater. 24, 201–206 (1990).CrossRef
26.
Zurück zum Zitat B. Fultz, H. Kuwano, and H. Ouyang, “Average widths of grain boundaries in nanophase alloys synthesized by mechanical attrition,” J. Appl. Phys. 77, 3458–3466 (1995).CrossRef B. Fultz, H. Kuwano, and H. Ouyang, “Average widths of grain boundaries in nanophase alloys synthesized by mechanical attrition,” J. Appl. Phys. 77, 3458–3466 (1995).CrossRef
27.
Zurück zum Zitat A. Hallil, A. Metsu, J. Bouhattate, and X. Feaugas, “Correlation between vacancy formation and Σ3 grain boundary structures in nickel from atomistic simulations,” Philos. Mag. 96, No. 20, 2088–2114 (2016).CrossRef A. Hallil, A. Metsu, J. Bouhattate, and X. Feaugas, “Correlation between vacancy formation and Σ3 grain boundary structures in nickel from atomistic simulations,” Philos. Mag. 96, No. 20, 2088–2114 (2016).CrossRef
28.
Zurück zum Zitat A. Suzuki and Y. Mishin, “Atomistic modeling of point defects and diffusion in copper grain boundaries,” Interf. Sci. 11, 131–148 (2003).CrossRef A. Suzuki and Y. Mishin, “Atomistic modeling of point defects and diffusion in copper grain boundaries,” Interf. Sci. 11, 131–148 (2003).CrossRef
29.
Zurück zum Zitat N. Chen, L.-L. Niu, Y. Zhang, X. Shu, H.-B. Zhou, S. Jin, G. Ran, G.-H. Lu, and F. Gao, “Energetics of vacancy segregation to [100] symmetric tilt grain boundaries in bcc tungsten,” Sci. Rep. 6, 36955 (2016).CrossRef N. Chen, L.-L. Niu, Y. Zhang, X. Shu, H.-B. Zhou, S. Jin, G. Ran, G.-H. Lu, and F. Gao, “Energetics of vacancy segregation to [100] symmetric tilt grain boundaries in bcc tungsten,” Sci. Rep. 6, 36955 (2016).CrossRef
Metadaten
Titel
Structure and Energy of Symmetric Tilt Boundaries with the 〈110〉 Axis in Ni and the Energy of Formation of Vacancies in Grain Boundaries
verfasst von
M. G. Urazaliev
M. E. Stupak
V. V. Popov
Publikationsdatum
01.07.2021
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 7/2021
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X21070139

Weitere Artikel der Ausgabe 7/2021

Physics of Metals and Metallography 7/2021 Zur Ausgabe

STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Formation of an Ordered Structure in the Cu–50 at % Pd Alloy