Skip to main content
Log in

Low-temperature synthesis of nanodispersed titanium, zirconium, and hafnium carbides

  • Synthesis and Properties of Inorganic Compounds
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Nanosized refractory titanium, zirconium, and hafnium carbides were manufactured from highly dispersed metal dioxide-carbon starting mixtures at moderate temperatures of 1200°C or lower. The products were characterized by powder X-ray diffraction, elemental analysis, and transmission electron microscopy. The average size of particles (in nanometers) manufactured at 1200°C was as follows: for TiC, 13 ± 4; for ZrC, 17 ± 3; and for HfC, 16 ± 3; the average crystallite size (in nanometers) was as follows: for TiC, 8 ± 2; for ZrC, 5 ± 2; and for HfC, 8 ± 3. Thermodynamic modeling was performed for the synthesis of Group IVB carbides via carbothermal reduction of the corresponding oxides. The results show that in the titanium dioxide-carbon system, for example, titanium monocarbide formation is possible at a temperature as low as 850°C (p = 10−4 MPa). Highly dispersed metal dioxide-carbon starting mixtures were prepared using solgel technology from metal alkoxyacetylacetonates in the presence of a polymeric carbon source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hugh O. Pierson. Handbook of Refractory Carbides and Nitrides. Properties, Characteristics, Processing and Applications (Noyes Publications, Westwood, 1996).

    Google Scholar 

  2. R. Kiffer and F. Benezovskii, Solid Materials (Metallurgiya, Moscow, 1968) [in Russian].

    Google Scholar 

  3. C. Agte and H. Alterthum, Z. Techn. Phys., No. 6, 182 (1930).

  4. V. V. Fesenko and A. S. Bolgar, Vaporization of Refractory Materials (Metallurgiya, Moscow, 1966) [in Russian].

    Google Scholar 

  5. G. V. Samsonov and I. M. Vinitskii, Handbook of Refractory Compounds (Metallurgiya, Moscow, 1976; Plenum Press, New York, 1980).

    Google Scholar 

  6. A. Sayir, J. Mater. Sci. 39, 5995 (2004).

    Article  CAS  Google Scholar 

  7. E. Wuchina, M. Opeka, S. Causey, et al., J. Mater. Sci. 39, 5939 (2004).

    Article  CAS  Google Scholar 

  8. M. B. Dickerson, P. J. Wurm, JR. Schorr, et al., J. Mater. Sci. 39, 6005 (2004).

    Article  CAS  Google Scholar 

  9. M. Fluche, G. E. Hilmas, W. G. Fahrenholtz, and S. E. Landwehr, 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. 2005. Article number 2005.

  10. Qingfeng Tong, Jingli Shi, Yongzhong Song, et al., Carbon 42(12–13), 2495 (2004).

    Article  CAS  Google Scholar 

  11. Li Shu-Ping, Li Ke-zhi, Li He-Jun, et al., Mater. Sci. Eng.: A 517(1–2), 61 (2009).

    Google Scholar 

  12. Houbu Li, Litong Zhang, Laifei Cheng, and Yiguang Wang, Ceram. Int. 35(7), 2831 (2009).

    Article  CAS  Google Scholar 

  13. Zhen Wang, Shaoming Dong, Xiangyu Zhang, et al., J. Am. Ceram. Soc. 91(10), 3434 (2008).

    Article  CAS  Google Scholar 

  14. Emission Properties of Solid Materials: A Handbook, Ed. by A. E. Sheindlin (Energiya, Moscow, 1974) [in Russian].

    Google Scholar 

  15. H. J. Boving and H. E. Hintermann, Tribology Int. 23(2), 129 (1990).

    Article  CAS  Google Scholar 

  16. T. Zehnder and J. Patscheider, Surf. Coat. Technol. 133–134, 138 (2000).

    Article  Google Scholar 

  17. G. E. Spriggs, Int. J. Refractory Metals & Hard Mater. 13, 241 (1995).

    Article  CAS  Google Scholar 

  18. M. B. Dickerson, P. J. Wurm, J. R. Schorr, et al., J. Mater. Sci. 39, 6005 (2004).

    Article  CAS  Google Scholar 

  19. V. E. Ovcharenko and Yu. F. Ivanov, Izv. Tomsk. Politekhn. Univ. 313(2), 114 (2008).

    Google Scholar 

  20. O. N. Dogn, J. A. Hawk, and K. K. Schrems, J. Mater. Eng. Perform. 15(3), 320 (2006).

    Article  Google Scholar 

  21. Jun Zhao, Xunliang Yuan, and Yonghui Zhou, Int. J. Refractory Met. Hard Mater. 28(3), 330 (2010).

    Article  CAS  Google Scholar 

  22. P. Bai and Y. Li, Sci. Sintering 41, 35 (2009).

    Article  CAS  Google Scholar 

  23. Bingqiang Liu, Chuanzhen Huang, Meilin Gu, et al., Mater. Sci. Eng.: A 460–461, 146 (2007).

    Google Scholar 

  24. M. Hassan, R. S. Rawat, P. Lee, et al., Appl. Phys. A 90, 669 (2008).

    Article  CAS  Google Scholar 

  25. L. Tong and R. G. Reddy, J. Miner. 58(4), 62 (2006).

    CAS  Google Scholar 

  26. D. E. Grove, U. Gupta, and A. W. Castleman, Jr., ACS Nano 4(1), 49 (2010).

    Article  CAS  Google Scholar 

  27. S. Sulaimankulova, E. Omurzak, J. Jasnakunov, et al., J. Cluster Sci. 20, 37 (2009).

    Article  CAS  Google Scholar 

  28. L. Tong and R. G. Reddy, Scr. Mater. 52(12), 1253 (2005).

    Article  CAS  Google Scholar 

  29. E. Wuchina, M. Opeka, S. Causey, et al., J. Mater. Sci. 39, 5939 (2004).

    Article  CAS  Google Scholar 

  30. Y. Leconte, H. Maskrot, N. Herlin-Boime, et al., Glass Phys. Chem 31(4), 510 (2005).

    Article  CAS  Google Scholar 

  31. J. W. Brockmeyer, B. E. Williams, and S. Heng, TMS Ann. Meeting, 259 (1998).

  32. N. I. Baklanova, T. M. Zima, A. T. Titov, et al., Inorg. Mater. 44(2), 121 (2008).

    Article  CAS  Google Scholar 

  33. Wei Sun, Xiang Xiong, Bai-yun Huang, et al., Carbon 47(14), 3368.

  34. R. Koc and J. S. Folmer, J. Am. Ceram. Soc. 80(4), 952 (1997).

    Article  CAS  Google Scholar 

  35. Y. Shin, X. S. Li, W. D. Samuels, et al., Mater. Res. Soc. Symp. Proc. 879E Warrendale. PA. Z10.25. (2005).

  36. H. Preiss, E. Schierhorn, and K.-W. Brzezinka, J. Mater. Sci. 33, 4697 (1998).

    Article  CAS  Google Scholar 

  37. M. D. Sacks, Wang Chang-An, Yang Zhaohui, and Jain Anubhav, J. Mater. Sci. 39, 6057 (2004).

    Article  CAS  Google Scholar 

  38. H. Preiss, L.-M. Berger, and D. Schultze, J. Eur. Ceram. Soc. 19, 195 (1999).

    Article  CAS  Google Scholar 

  39. Jain Anubhav, A Thesis Presented to the Academic Faculty Georgia Institute of Technology. USA (2004).

  40. P. Das Bharat, M. Panneerselvam, and K. J. Rao, J. Solid State Chem. 173(1), 196 (2003).

    Article  Google Scholar 

  41. Ch.-A. Wang and M. D. Sacks, Proceedings of the 27th Annual Cocoa Beach Conference on Advanced Ceramics and Composites, A: Ceramic Engineering and Science, Cocoa Beach, Florida, 2003 (Cocoa Beach, 2003), Vol. 24, No. 3, p. 33.

  42. A. Jain, M. D. Sacks, Ch.-A. Wang, et al., Proceedings of the 27th Annual Cocoa Beach Conference on Advanced Ceramics and Composites, A: Ceramic Engineering and Science, Cocoa Beach, Florida, 2003 (Cocoa Beach, 2003), Vol. 24, No. 3, p. 41.

  43. Yongjie Yan, Zhengren Huang, Xuejian Liu, and Dongliang Jiang, J. Sol-Gel Sci. Technol. 44, 81 (2007).

    Article  CAS  Google Scholar 

  44. Haijun Zhang, Faliang Lia, Quanli Jia, Guotian Ye, J. Sol-Gel Sci. Technol. 46, 217 (2008).

    Article  CAS  Google Scholar 

  45. V. G. Sevastyanov, R. G. Pavelko, and N. T. Kuznetsov, Khim. Tekhnol., No. 1, 12 (2007).

  46. V. G. Sevastyanov, R. G. Pavelko, Yu. S. Ezhov, and N. T. Kuznetsov, Neorg. Mater. 43(7), 792 (2007).

    Google Scholar 

  47. E. P. Simonenko, V. G. Sevastyanov, V. P. Meshalkin, and N. T. Kuznetsov, Kompozity Nanostruktury, No. 4, 28 (2009).

  48. E. N. Kablov, N. T. Kuznetsov, P. D. Sarkisov, et al., RU Patent No. 2350580 (2009).

  49. E. P. Simonenko, N. A. Ignatov, Yu. S. Ezhov, et al., Proceedings of the 3rd International Scientific and Engineering Conference “Metal Physics and Mechanics of Materials, Nanostructures, and Deformation Processes. METALLDEFORM-2009” (Samara, 2009), p. 146 [in Russian].

  50. N. T. Kuznetsov, V. G. Sevastyanov, E. P. Simonenko, et al., RU Patent No. 2333888 (2008).

  51. V. G. Sevastyanov, E. P. Simonenko, N. A. Ignatov, et al., Neorg. Mater. 46(5), 563 (2010).

    Article  Google Scholar 

  52. E. P. Simonenko, N. P. Simonenko, V. G. Sevastyanov, and N. T. Kuznetsov, Perspektivnye Mater., No. 9A, 35 (2010).

  53. N. T. Kuznetsov, V. G. Sevastyanov, E. P. Simonenko, et al., RU Patent No. 2407705 (2010).

  54. E. P. Simonenko, N. P. Simonenko, V. G. Sevastyanov, and Yu. P. Galaktionov, in Cosmic Challenge of the XXI Century. Novel Materials and Technologies for Rocket and Space Technology (Torus-Press, Moscow, 2007), Vol. 3, p. 71 [in Russian].

    Google Scholar 

  55. M. W. Chase, Jr., J. Phys. Chem. Ref. Data Monogr. 9 (1998).

  56. F. J. Kohl and C. A. Stearns, High Temp. Sci. 6(4), 284 (1974).

    CAS  Google Scholar 

  57. M. D. Hack, G. A. R. Maciagan, G. E. Scuseria, and M. S. Gordon, J. Chem. Phys. 104(17), 6628 (1996).

    Article  CAS  Google Scholar 

  58. C. W. Bauschlicher and E. M. Siegbahn, Chem. Phys. Lett. 104(4), 331 (1984).

    Article  CAS  Google Scholar 

  59. S. Sokolova and A. Luchov, Chem. Phys. Lett. 320(5), 421 (2000).

    Article  CAS  Google Scholar 

  60. X. B. Wang, C. F. Ding, and L. S. Wang, J. Phys. Chem. A 101(5), 7699 (1997).

    Article  CAS  Google Scholar 

  61. E. K. Storms, The Refractory Carbides (Academic Press, New York, 1967; Atomizdat, Moscow, 1970).

    Google Scholar 

  62. H. J. Schaller, Z. Metallkunde 86, 319 (1995).

    Google Scholar 

  63. S. Jonsson, Z. Metallkunde 87, 703 (1996).

    CAS  Google Scholar 

  64. T. C. Wallace, Sr., J. Am. Ceram. Soc. 76, 1409 (1993).

    Article  Google Scholar 

  65. A. Hara, J. Cryst. Growth 51, 164 (1981).

    Article  Google Scholar 

  66. E. Rudy, Planseeber. Pulvermetallurg. 8, 66 (1960).

    Google Scholar 

  67. R. V. Sara, Transact. Metallurg. Soc. AIME 233, 1683 (1965).

    CAS  Google Scholar 

  68. L. W. Artjuch, Colloq. Int. Centre Nat. Rech. Sci. (Paris), 277 (1971).

  69. A. I. Gusev and A. A. Rempel’, Dokl. Akad. Nauk 332(6), 717 (1993).

    CAS  Google Scholar 

  70. I. Barin, O. Knacke, and O. Kubaschewski, Thermochemical Properties of Inorganic Substances (Springer, Berlin, 1977).

    Google Scholar 

  71. L. V. Gurvich, I. V. Veits, V. A. Medvedev, et al., The Thermodynamic Properties of Individual Compounds: A Handbook, Ed. by V. P. Glushko (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  72. L. V. Gurvich and V. S. Iorish, et al., IVTANTERMO. A Thermodynamic Database and Software System for the Personal Computer. User’s Guide (CRC Press, Boca Raton, FL, 1993).

    Google Scholar 

  73. E. Rudy, D. P. Harmon, and C. E. Brukl, Rep. No. AFML-TR-65-2. Contract No. USAF 33(615)-1249. Air Force Mater. Lab., Wright-Patterson Air Force Base, (1965), Part I: Related Binary Systems, Vol. II: Ti-C and Zr-C Systems. Ternary Phase Equilibria in Transition Metal-Boron-Carbon-Silicon Systems.

  74. M. Pajunen and J. Kivilahti, Z. Metallkunde 83(1), 17 (1992).

    CAS  Google Scholar 

  75. J. P. Abriata, J. Garces, and R. Versaci, Bull. Alloy Phase Diagrams 7(2), 116, 203 (1986).

    Article  CAS  Google Scholar 

  76. P. Stecher, J. Less-Common Met. 5, 78 (1963).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Sevastyanov.

Additional information

Original Russian Text © V.G. Sevastyanov, E.P. Simonenko, N.A. Ignatov, Yu.S. Ezhov, N.P. Simonenko, N.T. Kuznetsov, 2011, published in Zhurnal Neorganicheskoi Khimii, 2011, Vol. 56, No. 5, pp. 707–719.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sevastyanov, V.G., Simonenko, E.P., Ignatov, N.A. et al. Low-temperature synthesis of nanodispersed titanium, zirconium, and hafnium carbides. Russ. J. Inorg. Chem. 56, 661–672 (2011). https://doi.org/10.1134/S0036023611050214

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023611050214

Keywords

Navigation